190 research outputs found
A Review of Shark Control in Hawaii with Recommendations for Future Research
In an attempt to allay public fears and to reduce the risk of shark
attack, the state government of Hawaii spent over 182 per shark.
The programs furnished information on diet, reproduction, and distribution of
sharks in Hawaii, but research efforts of the programs had a number of shortcomings.
Analysis of the biological data gathered was not directed toward
the tiger shark, Galeocerdo cuvier (Peron & LeSueur), which is responsible for
most attacks in Hawaii. Reliable estimates of shark populations in Hawaii
cannot be made based on catch data from control programs because of sampling
biases. Most of the information gained from the control programs was not
published in reviewed journals and is not readily available to the scientific
community. The ability of the control programs to reduce shark populations
and to remove large sharks from coastal waters appears to have been stated with
more confidence than is warranted, considering seasonal changes observed in
shark abundance and variable fishing effort. Shark control programs do not
appear to have had measurable effects on the rate of shark attacks in Hawaiian
waters. Implementation of large-scale control programs in the future in Hawaii
may not be appropriate. Increased understanding of the behavior and biology
of target species is necessary for evaluation of the effectiveness of small-scale
control efforts, such as selective fishing after an attack. Acoustic telemetry,
conventional tagging, and studies on population dynamics concentrating primarily
on the tiger shark may be used to obtain data about activity patterns,
distribution, and population parameters, providing information useful for reducing
the risk of shark attack in Hawaii and elsewhere
An Assessment of Mobile Predator Populations along Shallow and Mesophotic Depth Gradients in the Hawaiian Archipelago.
Large-bodied coral reef roving predators (sharks, jacks, snappers) are largely considered to be depleted around human population centers. In the Hawaiian Archipelago, supporting evidence is primarily derived from underwater visual censuses in shallow waters (=30?m). However, while many roving predators are present or potentially more abundant in deeper strata (30-100?m+), distributional information remains sparse. To partially fill that knowledge gap, we conducted surveys in the remote Northwestern Hawaiian Islands (NWHI) and populated Main Hawaiian Islands (MHI) from 2012-2014 using baited remote underwater stereo-video. Surveys between 0-100?m found considerable roving predator community dissimilarities between regions, marked conspicuous changes in species abundances with increasing depth, and largely corroborated patterns documented during shallow water underwater visual censuses, with up to an order of magnitude more jacks and five times more sharks sampled in the NWHI compared to the MHI. Additionally, several species were significantly more abundant and larger in mesophotic versus shallow depths, which remains particularly suggestive of deep-water refugia effects in the MHI. Stereo-video extends the depth range of current roving predator surveys in a more robust manner than was previously available, and appears to be well-suited for large-scale roving predator work in the Hawaiian Archipelago
Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild
Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intra-urban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that-just like in non-urban areas-plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Peer reviewe
Herbivory on the pedunculate oak along an urbanization gradient in Europe : Effects of impervious surface, local tree cover, and insect feeding guild
Urbanization is an important driver of the diversity and abundance of tree-associated insect herbivores, but its consequences for insect herbivory are poorly understood. A likely source of variability among studies is the insufficient consideration of intraurban variability in forest cover. With the help of citizen scientists, we investigated the independent and interactive effects of local canopy cover and percentage of impervious surface on insect herbivory in the pedunculate oak (Quercus robur L.) throughout most of its geographic range in Europe. We found that the damage caused by chewing insect herbivores as well as the incidence of leaf-mining and gall-inducing herbivores consistently decreased with increasing impervious surface around focal oaks. Herbivory by chewing herbivores increased with increasing forest cover, regardless of impervious surface. In contrast, an increase in local canopy cover buffered the negative effect of impervious surface on leaf miners and strengthened its effect on gall inducers. These results show that – just like in non-urban areas – plant-herbivore interactions in cities are structured by a complex set of interacting factors. This highlights that local habitat characteristics within cities have the potential to attenuate or modify the effect of impervious surfaces on biotic interactions.Agence Nationale de la Recherche, Grant/Award Number: ANR-10--LABX-45; Fondation BNP Paribas.info:eu-repo/semantics/publishedVersio
Convergence of marine megafauna movement patterns in coastal and open oceans
Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine
vertebrates partly depends on the animals’ movement patterns.
Effective conservation requires identification of the key drivers of
movement including intrinsic properties and extrinsic constraints
associated with the dynamic nature of the environments the animals
inhabit. However, the relative importance of intrinsic versus
extrinsic factors remains elusive. We analyse a global dataset of
2.8 million locations from > 2,600 tracked individuals across 50
marine vertebrates evolutionarily separated by millions of years
and using different locomotion modes (fly, swim, walk/paddle).
Strikingly, movement patterns show a remarkable convergence,
being strongly conserved across species and independent of body
length and mass, despite these traits ranging over 10 orders of
magnitude among the species studied. This represents a fundamental
difference between marine and terrestrial vertebrates not
previously identified, likely linked to the reduced costs of locomotion
in water. Movement patterns were primarily explained by the
interaction between species-specific traits and the habitat(s) they
move through, resulting in complex movement patterns when
moving close to coasts compared to more predictable patterns
when moving in open oceans. This distinct difference may be
associated with greater complexity within coastal micro-habitats,
highlighting a critical role of preferred habitat in shaping marine
vertebrate global movements. Efforts to develop understanding
of the characteristics of vertebrate movement should consider the
habitat(s) through which they move to identify how movement
patterns will alter with forecasted severe ocean changes, such as
reduced Arctic sea ice cover, sea level rise and declining oxygen
content.Workshops funding granted by the UWA Oceans Institute, AIMS, and
KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC
(UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by
UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by
a CAPES fellowship (Ministry of Education)
Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice
Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat
The Shark Assemblage at French Frigate Shoals Atoll, Hawai‘i: Species Composition, Abundance and Habitat Use
Empirical data on the abundance and habitat preferences of coral reef top predators are needed to evaluate their ecological impacts and guide management decisions. We used longline surveys to quantify the shark assemblage at French Frigate Shoals (FFS) atoll from May to August 2009. Fishing effort consisted of 189 longline sets totaling 6,862 hook hours of soak time. A total of 221 sharks from 7 species were captured, among which Galapagos (Carcharhinus galapagensis, 36.2%), gray reef (Carcharhinus amblyrhynchos, 25.8%) and tiger (Galeocerdo cuvier, 20.4%) sharks were numerically dominant. A lack of blacktip reef sharks (Carcharhinus melanopterus) distinguished the FFS shark assemblage from those at many other atolls in the Indo-Pacific. Compared to prior underwater visual survey estimates, longline methods more accurately represented species abundance and composition for the majority of shark species. Sharks were significantly less abundant in the shallow lagoon than adjacent habitats. Recaptures of Galapagos sharks provided the first empirical estimate of population size for any Galapagos shark population. The overall recapture rate was 5.4%. Multiple closed population models were evaluated, with Chao Mh ranking best in model performance and yielding a population estimate of 668 sharks with 95% confidence intervals ranging from 289–1720. Low shark abundance in the shallow lagoon habitats suggests removal of a small number of sharks from the immediate vicinity of lagoonal islets may reduce short-term predation on endangered monk seal (Monachus schauinslandi) pups, but considerable fishing effort would be required to catch even a small number of sharks. Additional data on long-term movements and habitat use of sharks at FFS are required to better assess the likely ecological impacts of shark culling
Drivers of reef shark abundance and biomass in the Solomon Islands
Remote island nations face a number of challenges in addressing concerns about shark population status, including access to rigorously collected data and resources to manage fisheries. At present, very little data are available on shark populations in the Solomon Islands and scientific surveys to document shark and ray diversity and distribution have not been completed. We aimed to provide a baseline of the relative abundance and diversity of reef sharks and rays and assess the major drivers of reef shark abundance/biomass in the Western Province of the Solomon Islands using stereo baited remote underwater video. On average reef sharks were more abundant than in surrounding countries such as Fiji and Indonesia, yet below that of remote islands without historical fishing pressure, suggesting populations are relatively healthy but not pristine. We also assessed the influence of location, habitat type/complexity, depth and prey biomass on reef shark abundance and biomass. Location was the most important factor driving reef shark abundance and biomass with two times the abundance and a 43% greater biomass of reef sharks in the more remote locations, suggesting fishing may be impacting sharks in some areas. Our results give a much needed baseline and suggest that reef shark populations are still relatively unexploited, providing an opportunity for improved management of sharks and rays in the Solomon Islands
Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark
© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., González Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-Macías, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a Ciência e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org)
Social preferences and network structure in a population of reef manta rays
Understanding how individual behavior shapes the structure and ecology ofpopulations is key to species conservation and management. Like manyelasmobranchs, manta rays are highly mobile and wide ranging species threatened byanthropogenic impacts. In shallow-water environments these pelagic rays often formgroups, and perform several apparently socially-mediated behaviors. Group structuresmay result from active choices of individual rays to interact, or passive processes.Social behavior is known to affect spatial ecology in other elasmobranchs, but this isthe first study providing quantitative evidence for structured social relationships inmanta rays. To construct social networks, we collected data from more than 500groups of reef manta rays over five years, in the Raja Ampat Regency of West Papua.We used generalized affiliation indices to isolate social preferences from non-socialassociations, the first study on elasmobranchs to use this method. Longer lastingsocial preferences were detected mostly between female rays. We detectedassortment of social relations by phenotype and variation in social strategies, with theoverall social network divided into two main communities. Overall network structurewas characteristic of a dynamic fission-fusion society, with differentiated relationshipslinked to strong fidelity to cleaning station sites. Our results suggest that fine-scaleconservation measures will be useful in protecting social groups of M. alfredi in theirnatural habitats, and that a more complete understanding of the social nature of mantarays will help predict population response
- …