127 research outputs found
Reversal of aging-induced increases in aortic stiffness by targeting cytoskeletal protein-protein interfaces
BACKGROUND: The proximal aorta normally functions as a critical shock absorber that protects small downstream vessels from damage by pressure and flow pulsatility generated by the heart during systole. This shock absorber function is impaired with age because of aortic stiffening.
METHODS AND RESULTS: We examined the contribution of common genetic variation to aortic stiffness in humans by interrogating results from the AortaGen Consortium genome‐wide association study of carotid‐femoral pulse wave velocity. Common genetic variation in the N‐WASP (WASL) locus is associated with carotid‐femoral pulse wave velocity (rs600420, P=0.0051). Thus, we tested the hypothesis that decoy proteins designed to disrupt the interaction of cytoskeletal proteins such as N‐WASP with its binding partners in the vascular smooth muscle cytoskeleton could decrease ex vivo stiffness of aortas from a mouse model of aging. A synthetic decoy peptide construct of N‐WASP significantly reduced activated stiffness in ex vivo aortas of aged mice. Two other cytoskeletal constructs targeted to VASP and talin‐vinculin interfaces similarly decreased aging‐induced ex vivo active stiffness by on‐target specific actions. Furthermore, packaging these decoy peptides into microbubbles enables the peptides to be ultrasound‐targeted to the wall of the proximal aorta to attenuate ex vivo active stiffness.
CONCLUSIONS: We conclude that decoy peptides targeted to vascular smooth muscle cytoskeletal protein‐protein interfaces and microbubble packaged can decrease aortic stiffness ex vivo. Our results provide proof of concept at the ex vivo level that decoy peptides targeted to cytoskeletal protein‐protein interfaces may lead to substantive dynamic modulation of aortic stiffness.Published versio
Reversal of aging-induced increases in aortic stiffness by targeting cytoskeletal protein-protein interfaces
Background: The proximal aorta normally functions as a critical shock absorber that protects small downstream vessels from damage by pressure and flow pulsatility generated by the heart during systole. This shock absorber function is impaired with age because of aortic stiffening.
Methods and Results: We examined the contribution of common genetic variation to aortic stiffness in humans by interrogating results from the AortaGen Consortium genome-wide association study of carotid-femoral pulse wave velocity. Common genetic variation in the N-WASP (WASL) locus is associated with carotid-femoral pulse wave velocity (rs600420, P=0.0051). Thus, we tested the hypothesis that decoy proteins designed to disrupt the interaction of cytoskeletal proteins such as N-WASP with its binding partners in the vascular smooth muscle cytoskeleton could decrease ex vivo stiffness of aortas from a mouse model of aging. A synthetic decoy peptide construct of N-WASP significantly reduced activated stiffness in ex vivo aortas of aged mice. Two other cytoskeletal constructs targeted to VASP and talin-vinculin interfaces similarly decreased aging-induced ex vivo active stiffness by on-target specific actions. Furthermore, packaging these decoy peptides into microbubbles enables the peptides to be ultrasound-targeted to the wall of the proximal aorta to attenuate ex vivo active stiffness.
Conclusions: We conclude that decoy peptides targeted to vascular smooth muscle cytoskeletal protein-protein interfaces and microbubble packaged can decrease aortic stiffness ex vivo. Our results provide proof of concept at the ex vivo level that decoy peptides targeted to cytoskeletal protein-protein interfaces may lead to substantive dynamic modulation of aortic stiffness
Orthostatic hypotension and novel blood pressure-associated gene variants: Genetics of Postural Hemodynamics (GPH) Consortium
Aims: Orthostatic hypotension (OH), an independent predictor of mortality and cardiovascular events, strongly correlates with hypertension. Recent genome-wide studies have identified new loci influencing blood pressure (BP) in populations, but their impact on OH remains unknown. Methods and Results: A total of 38 970 men and women of European ancestry from five population-based cohorts were included, of whom 2656 (6.8%) met the diagnostic criteria for OH (systolic/diastolic BP drop ≥20/10 mmHg within 3 min of standing). Thirty-one recently discovered BP-associated single nucleotide polymorphisms (SNPs) were examined using an additive genetic model and the major allele as referent. Relations between OH, orthostatic systolic BP response, and genetic variants were assessed by inverse variance-weighted meta-analysis. We found Bonferroni adjusted (P < 0.0016) significant evidence for association between OH and the EBF1 locus (rs11953630, per-minor-allele odds ratio, 95% confidence interval: 0.90, 0.85–0.96; P = 0.001), and nominal evidence (P < 0.05) for CYP17A1 (rs11191548: 0.85, 0.75–0.95; P = 0.005), and NPR3-C5orf23 (rs1173771: 0.92, 0.87–0.98; P= 0.009) loci. Among subjects not taking BP-lowering drugs, three SNPs within the NPPA/NPPB locus were nominally associated with increased risk of OH (rs17367504: 1.13, 1.02–1.24; P = 0.02, rs198358: 1.10, 1.01–1.20; P = 0.04, and rs5068: 1.22, 1.04–1.43; P = 0.01). Moreover, an ADM variant was nominally associated with continuous orthostatic systolic BP response in the adjusted model (P= 0.04). Conclusion: The overall association between common gene variants in BP loci and OH was generally weak and the direction of effect inconsistent with resting BP findings. These results suggest that OH and resting BP share few genetic components
Early postural blood pressure response and cause-specific mortality among middle-aged adults
Orthostatic hypotension (OH) is associated with increased total mortality but contribution of specific death causes has not been thoroughly explored. In this prospective study, authors followed up 32,068 individuals without baseline history of cancer or cardiovascular disease (69% men; mean age, 46 years; range, 26–61 years) over a period of 24 years. Hazard ratios (HRs) for total and cause-specific mortality associated with presence of OH and by quartiles of postural systolic blood pressure response (∆SBP) were assessed using multivariate adjusted Cox regression model. A total of 7,145 deaths (22.3%, 9.4 deaths/1,000 person-years) occurred during follow-up. Those with OH (n = 1,943) had higher risk of death due to injury (HR, 1.88; 1.37–2.57) and neurological disease (HR, 2.21; 1.39–3.51). Analogically, risk of death caused by injury and neurological disease increased across the quartiles of ∆SBP from hyper- (Q1SBP, +8.5 ± 4.7 mmHg) to hypotensive response (Q4SBP, −13.7 ± 5.7 mmHg; HR, 1.32; 1.00–1.72, and 1.84; 1.20–2.82, respectively) as did also risk of death due to respiratory disease (Q4SBP vs. Q1SBP: HR, 1.53; 1.14–2.04). In contrast, risk curve for cerebrovascular death was U-shaped with nadir in the mildly hypotensive 3rd quartile of ∆SBP (−5.0 ± 0.1 mmHg, Q3SBP vs. Q1SBP: HR, 0.75; 0.54–1.03; P for linear trend = 0.021). Additionally, cardiovascular mortality was increased among 5,805 rescreened participants (mean age, 53 years; 9.8% OH positive: HR, 1.54; 1.24–1.89, and Q4SBP vs. Q1SBP: 1.27; 1.02–1.57, respectively). In summary, increased mortality predicted by blood pressure fall on standing is associated with injuries, neurodegenerative, and respiratory diseases, as well as with cardiovascular disease in older adults. Moreover, both increase and pronounced decrease of SBP during early orthostasis indicate higher risk of cerebrovascular death
Recommended from our members
Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels
Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these
cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using 2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects
inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant or suggestive associations were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding . Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels
Genetic Risk Score for Intracranial Aneurysms:Prediction of Subarachnoid Hemorrhage and Role in Clinical Heterogeneity
BACKGROUND: Recently, common genetic risk factors for intracranial aneurysm (IA) and aneurysmal subarachnoid hemorrhage (ASAH) were found to explain a large amount of disease heritability and therefore have potential to be used for genetic risk prediction. We constructed a genetic risk score to (1) predict ASAH incidence and IA presence (combined set of unruptured IA and ASAH) and (2) assess its association with patient characteristics. METHODS: A genetic risk score incorporating genetic association data for IA and 17 traits related to IA (so-called metaGRS) was created using 1161 IA cases and 407 392 controls from the UK Biobank population study. The metaGRS was validated in combination with risk factors blood pressure, sex, and smoking in 828 IA cases and 68 568 controls from the Nordic HUNT population study. Furthermore, we assessed association between the metaGRS and patient characteristics in a cohort of 5560 IA patients. RESULTS: Per SD increase of metaGRS, the hazard ratio for ASAH incidence was 1.34 (95% CI, 1.20-1.51) and the odds ratio for IA presence 1.09 (95% CI, 1.01-1.18). Upon including the metaGRS on top of clinical risk factors, the concordance index to predict ASAH hazard increased from 0.63 (95% CI, 0.59-0.67) to 0.65 (95% CI, 0.62-0.69), while prediction of IA presence did not improve. The metaGRS was statistically significantly associated with age at ASAH (β=-4.82×10(-3) per year [95% CI, -6.49×10(-3) to -3.14×10(-3)]; P=1.82×10(-8)), and location of IA at the internal carotid artery (odds ratio=0.92 [95% CI, 0.86-0.98]; P=0.0041). CONCLUSIONS: The metaGRS was predictive of ASAH incidence, although with limited added value over clinical risk factors. The metaGRS was not predictive of IA presence. Therefore, we do not recommend using this metaGRS in daily clinical care. Genetic risk does partly explain the clinical heterogeneity of IA warranting prioritization of clinical heterogeneity in future genetic prediction studies of IA and ASAH
Return to sports after COVID-19: a position paper from the Dutch Sports Cardiology Section of the Netherlands Society of Cardiology
The coronavirus disease 2019 (COVID-19) pandemic has led to preventive measures worldwide. With the decline of infection rates, less stringent restrictions for sports and exercise are being implemented. COVID-19 is associated with significant cardiovascular complications; however there are limited data on cardiovascular complications and long-term outcomes in both competitive (elite) athletes and highly active individuals. Based on different categories of disease severity (asymptomatic, regional/systemic symptoms, hospitalisation, myocardial damage, and/or myocarditis), in this point-of-view article we offer the (sports) cardiologist or sports physician in the Netherlands a practical guide to pre-participation screening, and diagnostic and management strategies in all athletes >16 years of age after COVID-19 infection
Genome-Wide Association Studies of Serum Magnesium, Potassium, and Sodium Concentrations Identify Six Loci Influencing Serum Magnesium Levels
Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using ∼2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p<5×10−8) or suggestive associations (p<4×10−7) were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding p<4×10−7. Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels
Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.
Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
- …