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Aims Orthostatic hypotension (OH), an independent predictor of mortality and cardiovascular events, strongly correlates
with hypertension. Recent genome-wide studies have identified new loci influencing blood pressure (BP) in popula-
tions, but their impact on OH remains unknown.

Methods
and results

A total of 38 970 men and women of European ancestry from five population-based cohorts were included, of whom
2656 (6.8%) met the diagnostic criteria for OH (systolic/diastolic BP drop ≥20/10 mmHg within 3 min of standing).
Thirty-one recently discovered BP-associated single nucleotide polymorphisms (SNPs) were examined using an additive
genetic model and the major allele as referent. Relations between OH, orthostatic systolic BP response, and genetic var-
iants were assessed by inverse variance-weighted meta-analysis. We found Bonferroni adjusted (P , 0.0016) significant
evidence for association between OH and the EBF1 locus (rs11953630, per-minor-allele odds ratio, 95% confidence
interval: 0.90, 0.85–0.96; P ¼ 0.001), and nominal evidence (P , 0.05) for CYP17A1 (rs11191548: 0.85, 0.75–0.95;
P ¼ 0.005), and NPR3-C5orf23 (rs1173771: 0.92, 0.87–0.98; P ¼ 0.009) loci. Among subjects not taking BP-lowering
drugs, three SNPs within the NPPA/NPPB locus were nominally associated with increased risk of OH (rs17367504:
1.13, 1.02–1.24; P ¼ 0.02, rs198358: 1.10, 1.01–1.20; P ¼ 0.04, and rs5068: 1.22, 1.04–1.43; P ¼ 0.01). Moreover, an
ADM variant was nominally associated with continuous orthostatic systolic BP response in the adjusted model (P ¼ 0.04).

Conclusion The overall association between common gene variants in BP loci and OH was generally weak and the direction of effect
inconsistent with resting BP findings. These results suggest that OH and resting BP share few genetic components.
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Introduction
As people spend much of their active time in the upright position,
well-functioning cardiovascular reflexes are crucial for neutralizing
the haemodynamic effects of gravity and maintaining adequate per-
fusion of the upper body.1 Otherwise, disturbances of the haemo-
dynamic response to postural change may result in orthostatic
hypotension (OH), provoking signs of cerebral hypoperfusion,
such as dizziness and syncope.2 However, OH is often asymptom-
atic and occurs in the general population, where it has been linked
to advancing age,3 neurodegenerative diseases,4 diabetes,5 hyper-
tension,6 and reduced renal function.7 Further, OH predicts mor-
tality and cardiovascular events, independently of traditional risk
factors.8– 13

In parallel, several authors have examined the genetic compo-
nent of OH.14,15 Population-based studies have suggested that
polymorphisms of G-protein-related genes GNAS1 and GNB3, in-
fluencing cardiovascular tone and reactivity,16 Insulin promoter
factor 1 (PDX1) on chromosome 13, implicated in beta-cell func-
tion,17 and the neural precursor cell expressed, developmentally
down-regulated 4-like gene (NEDD4L) on chromosome 18, an es-
sential regulator of sodium retention in the distal nephron,18 may
be associated with altered postural systolic blood pressure (SBP)
response. However, the sample sizes were relatively small
(varying from 415 to 3383 individuals).

Recently, in a series of genome-wide association studies
(GWAS), we and others have identified nearly 30 new loci asso-
ciated with resting BP and hypertension risk.19–22 As physiological
pathways involved in systemic BP control may impact the haemo-
dynamic response to orthostasis, we proposed to study the rela-
tionship between the newly discovered BP-associated single
nucleotide polymorphisms (SNPs), OH, and postural systolic BP
response in five large population-based cohorts of European an-
cestry, all of which were part of The International Consortium
for Blood Pressure GWAS.22

Methods

Study samples, baseline examination,
and genetic analyses
A detailed description of study samples [The Atherosclerosis Risk in
Communities Study (ARIC), The Cardiovascular Health Study (CHS),
The Framingham Heart Study (FHS), The Malmö Preventive Project
(MPP), and The Rotterdam Study], baseline examination, and genetic
analyses are provided in the Supplementary material online, Methods.

Clinical characteristics
Orthostatic hypotension was defined according to international con-
sensus as a decrease in mean SBP ≥20 mmHg and/or decrease in
mean diastolic BP (DBP) ≥10 mmHg within 3 min of standing.23 Pos-
tural change in SBP (DSBP) was calculated as supine SBP—standing
SBP to match the directionality of the regression coefficients for OH
in statistical analyses. Hypertension was defined as a mean supine

SBP ≥140 mmHg and/or mean supine DBP ≥90 mmHg, or use of anti-
hypertensive treatment.24 Diabetes was defined as fasting plasma
glucose (FPG) ≥7.0 mmol/L, or current pharmacological treatment
of diabetes, or a self-reported history of diabetes.25

Statistical analyses
All non-European descent individuals were excluded prior to analysis.
Thirty-one preselected SNPs, which previously showed significant asso-
ciation with BP and/or hypertension in GWAS of European descent
individuals, were examined using additive models for increasing copy
of the minor allele (i.e. major allele homozygote ¼ 0, heterozygote ¼
1, and minor allele homozygote ¼ 2). In a three-stage analysis within
each cohort, we first performed logistic regression with OH as a
binary variable, and linear regression using the orthostatic SBP response
as a dependent continuous variable without adjusting for covariates. In
the second stage, we adjusted for age at examination, gender, body mass
index (BMI), current smoking, resting SBP and DBP, use of antihyperten-
sive treatment, and diabetes as potential confounders. In the third stage,
all individuals taking antihypertensive treatment were excluded. We
combined the results of all five cohorts using inverse variance-weighted
meta-analysis according to the regression models: unadjusted,
multivariable-adjusted, and excluding those receiving antihypertensive
treatment, respectively. The fixed effects model of meta-analysis was
applied in the absence of significant between-study heterogeneity (x2

heterogeneity, P ≥ 0.05); otherwise a random effects model was
used. The meta-analytical approach was chosen based on a recent com-
parison of meta-analysis with joint analysis of individual participant data
showing that these two methods are equivalent.26

Logistic and linear regressions were performed using IBM SPSS Sta-
tistics software version 19.0 (SPSS, Inc., Chicago, IL, USA) except for
FHS (details provided in the see Supplementary material online), and
for CHS (R Statistical Software, R Foundation for Statistical Comput-
ing, Vienna, Austria). Inverse-variance-weighted meta-analysis was per-
formed using STATA 11 (STATACorp LP, College Station, TX, USA).
Power calculations were done by PS Power and Sample Size Calcula-
tions software version 3.0 (Department of Biostatistics, Vanderbilt Uni-
versity, TN, USA). All tests were two-sided and P , 0.05 was
considered as nominally significant. The nominally significant associa-
tions were then re-evaluated using the Bonferroni method for multiple
testing (P , 0.05/31 tested variants).

Results
A total of 38 970 men and women were included; of these 2656
(6.8%) met the diagnostic criteria for OH. ARIC and MPP repre-
sented relatively younger cohorts (45–54 years) when compared
with CHS, FHS, and Rotterdam Study (62–72 years) and had a
lower prevalence of OH (Table 1). A small fraction of MPP partici-
pants were on anti-hypertensive treatment (�4.5%), whereas, in
ARIC, the proportion did not substantially differ from other
cohorts (�25 vs. 22–30%). Minor allele frequencies of the ana-
lysed SNPs were consistent across the cohorts (see Supplemen-
tary material online, Table S1).
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Table 1 Characteristics of study participants by orthostatic hypotension status presented as means (SD) or percentage

Characteristic ARIC CHS FHS MPP Rotterdam

OH2
(n 5 9171)

OH 1
(n 5 446)

OH2
(n 5 2534)

OH 1
(n 5 481)

OH2
(n 5 2773)

OH1
(n 5 321)

OH2
(n 5 17 493)

OH1
(n 5 383)

OH2
(n 5 4343)

OH1
(n 5 1025)

Age (years) 54 (6) 58 (5) 72 (5) 73 (5) 62 (9) 65 (9) 45 (7) 50 (7) 68 (9) 73 (9)

Gender (male %) 47 51 39 40 43 40 65 45 43 33

BMI (kg/m2) 27 (5) 27 (5) 26 (5) 26 (4) 28 (5) 27 (5) 24 (3) 24 (4) 26 (4) 27 (5)

Current smoking (%) 24 29 11 11 14 15 38 38 23 24

SBP supine (mmHg) 118 (17) 126 (19) 135 (21) 136 (23) 134 (18) 146 (19) 127 (14) 137 (19) 138 (22) 144 (23)

DBP supine (mmHg) 71 (10) 73 (11) 71 (11) 69 (12) 79 (9) 80 (9) 84 (9) 87 (11) 74 (11) 74 (12)

Hypertensiona (%)

≥140/90 mmHg 12 24 52 55 27 30 35 52 53 65

≥160/100 mmHg 2 6 36 40 7 8 7 20 31 42

Antihypertensive
treatment (%)

24 48 30 31 30 41 4 12 21 27

Diabetes (%) 9 17 12 14 9 11 3 6 9 14

Prevalent CVD (%) 5 9 0 0 7 13 0 0 13 18

ARIC, the Atherosclerosis Risk in Communities Study; CHS, the Cardiovascular Health Study; FHS, the Framingham Heart Study; MPP, the Malmö Preventive Project; Rotterdam, the Rotterdam Study; BMI, body mass index; SBP, systolic blood
pressure; DBP, diastolic blood pressure; CVD, cardiovascular disease.
aHypertension was defined according to supine or sitting (for CHS only) BP.
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Table 2 Association between single nucleotide polymorphisms and orthostatic hypotension according to three different logistic regression models in
meta-analysis of five cohorts

SNP ID Chr Model 1 Model 2 Model 3

Locus Crude (n 5 38 970) Adjusted (n 5 38 970) No antihypertensive treatment (n 5 32 679)

Regression coefficient P-value Regression coefficient P-value Regression coefficient P-value

Est. coefficient 95% CI Est. coefficient 95% CI Est. coefficient 95% CI

rs10850411

TBX5 -TBX3 12 0.021 20.047, 0.089 0.55 0.024 20.046, 0.094 0.50 0.006 20.079, 0.090 0.89

rs11191548

CYP17A1 -NT5C2 10 20.167 20.284, 20.051 0.005 20.173 20.294, 20.052 0.005 20.168 20.313, 20.024 0.022

rs1173771

NPR3 -C5orf23 5 20.082 20.144, 20.020 0.009 20.081 20.145, 20.017 0.012 20.057 20.134, 0.019 0.14

rs11953630

EBF1 5 20.103 20.167, 20.040 0.001 20.096 20.161, 20.030 0.004 20.107 20.186, 20.029 0.007

rs12946454

PLCD3 17 0.070 20.045, 0.185 0.23 0.068 20.047, 0.183 0.25 0.022 20.063, 0.107 0.61

rs13082711

SLC4A7 3 20.005 20.080, 0.070 0.89 0.002 20.075, 0.080 0.95 20.011 20.104, 0.082 0.82

rs13107325

SLC39A8 4 0.045 20.078, 0.167 0.47 0.042 20.084, 0.167 0.52 20.014 20.168, 0.141 0.86

rs13139571

GUCY1A3 -GUCY1B3 4 0.016 20.055, 0.087 0.66 0.027 20.047, 0.100 0.48 0.000 20.088, 0.089 0.99

rs1327235

JAG1 20 0.049 20.013, 0.110 0.12 0.039 20.025, 0.103 0.24 0.068 20.009, 0.145 0.082

rs1378942

CYP1A1 -ULK3 15 0.037 20.027, 0.101 0.26 0.027 20.039, 0.093 0.42 0.069 20.010, 0.147 0.088

rs1530440

C10orf107 10 20.034 20.114, 0.045 0.40 20.033 20.115, 0.049 0.44 20.039 20.137, 0.058 0.43

rs16948048

ZNF652 17 20.009 20.072, 0.053 0.77 0.008 20.056, 0.072 0.81 0.004 20.073, 0.081 0.92

rs16998073

PRDM8 -FGF5 4 0.066 20.068, 0.200 0.34 0.0634 20.083, 0.210 0.40 20.001 20.094, 0.092 0.99

rs17367504

MTHFR -NPPB 1 0.045 20.036, 0.126 0.28 0.054 20.030, 0.138 0.20 0.121 0.022, 0.219 0.016

rs17608766

GOSR2 17 0.064 20.029, 0.158 0.18 0.057 20.039, 0.154 0.25 0.069 20.048, 0.185 0.25

rs1799945

HFE 6 20.057 20.146, 0.032 0.21 20.049 20.140, 0.043 0.30 20.037 20.148, 0.075 0.52
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rs198358

NPPA -NPPB 1 0.038 20.033, 0.109 0.29 0.048 20.025, 0.122 0.20 0.093 0.006, 0.179 0.036

rs2521501

FURIN -FES 15 0.025 20.049, 0.100 0.51 0.030 20.047, 0.107 0.45 0.019 20.072, 0.111 0.68

rs2681492

ATP2B1 12 20.034 20.114, 0.045 0.40 20.031 20.114, 0.051 0.46 20.046 20.144, 0.053 0.36

rs2932538

MOV10 1 0.030 20.040, 0.101 0.40 0.038 20.034, 0.111 0.30 0.028 20.060, 0.115 0.53

rs3184504

SH2B3 12 20.003 20.063, 0.056 0.91 20.006 20.067, 0.055 0.84 20.022 20.095, 0.051 0.56

rs3774372

ULK4 3 20.002 20.083, 0.079 0.96 0.008 20.076, 0.091 0.86 0.011 0.089, 0.112 0.83

rs381815

PLEKHA7 11 20.010 20.079, 0.058 0.77 0.007 20.063, 0.078 0.84 20.015 20.100, 0.070 0.73

rs419076

MECOM 3 20.005 20.065, 0.056 0.88 20.004 20.067, 0.058 0.89 0.000 20.075, 0.075 1.00

rs4373814

CACNB2(5′) 10 0.014 20.047, 0.075 0.66 20.001 20.064, 0.062 0.97 0.011 20.065, 0.088 0.77

rs5068

NPPA -NPPB 1 0.074 20.060, 0.208 0.28 0.081 20.058, 0.220 0.25 0.198 0.041, 0.355 0.014

rs6015450

GNAS -EDN3 20 0.030 20.063, 0.122 0.53 0.043 20.052, 0.138 0.38 0.061 20.054, 0.176 0.30

rs633185

FLJ32810 -TMEM133 11 20.038 20.105, 0.030 0.28 20.021 20.092, 0.049 0.55 20.015 20.098, 0.069 0.73

rs7129220

ADM 11 0.062 20.039, 0.162 0.23 0.068 20.036, 0.172 0.20 0.046 20.079, 0.172 0.47

rs805303

BAT2 -BAT5 6 0.010 20.053, 0.072 0.76 0.009 20.055, 0.073 0.79 20.022 20.169, 0.125 0.77

rs932764

PLCE1 10 20.013 20.074, 0.048 0.68 20.016 20.079, 0.048 0.63 0.003 20.133, 0.139 0.97

Chr, chromosome; Est. coefficient, estimate coefficient.
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Association between blood pressure gene
variants and orthostatic hypotension
As can be seen in Table 2, minor alleles of rs11191548, rs1173771,
and rs11953630, all of which are associated with lower resting BP,
were also nominally associated with lower probability of OH in

both the crude and adjusted model (Figures 1–3). Of these, only
rs11953630 met the Bonferroni significance level (P , 0.05/31,
model 1). After exclusion of all subjects taking anti-hypertensive
drugs, the relationship between OH and rs1173771 was attenu-
ated, while it remained substantially unchanged for rs11191548
and rs11953630 (Table 2). In the human genome, rs11191548

Figure 1 Forest plot for association between rs11191548 (C/T) and orthostatic hypotension (OH) according to unadjusted logistic regres-
sion model (Model 1) in meta-analysis of five cohorts. MPP, the Malmö Preventive Project; ARIC, the Atherosclerosis Risk in Communities
Study; CHS, the Cardiovascular Health Study; Framingham, the Framingham Heart Study; Rotterdam, the Rotterdam Study; OR, odds ratio;
CI, confidence interval.

Figure 2 Forest plot for association between rs1173771 (A/G) and orthostatic hypotension (OH) according to unadjusted logistic regression
model (Model 1) in meta-analysis of five cohorts. MPP, the Malmö Preventive Project; ARIC, the Atherosclerosis Risk in Communities Study;
CHS, the Cardiovascular Health Study; Framingham, the Framingham Heart Study; Rotterdam, the Rotterdam Study; OR, odds ratio; CI, con-
fidence interval.
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resides at a locus that contains CYP17A1, rs11953630 is situated in
the vicinity of CLINT1/EBF1, and rs1173771 is located near NPR3, a
gene coding for natriuretic peptide clearance receptor (NPR3).
Furthermore, when participants taking BP-lowering drugs were
excluded, we noted nominally significant association between

OH and rs17367504, rs198358, and rs5068 (Figures 4–6). These
three SNPs are located in the NPPA/NPPB region and are asso-
ciated with lower BP, but higher odds for OH. Among those
genetic variants, which were associated with OH, there was no sig-
nificant (P , 0.10) SNP–SNP interactions on OH.

Figure 3 Forest plot for association between rs11953630 (T/C) and orthostatic hypotension (OH) according to unadjusted logistic regres-
sion model (Model 1) in meta-analysis of five cohorts. MPP, the Malmö Preventive Project; ARIC, the Atherosclerosis Risk in Communities
Study; CHS, the Cardiovascular Health Study; Framingham, the Framingham Heart Study; Rotterdam, the Rotterdam Study; OR, odds ratio;
CI, confidence interval.

Figure 4 Forest plot for association between rs17367504 (G/A) and orthostatic hypotension (OH) according to the adjusted logistic regres-
sion model after exclusion of participants taking antihypertensive drugs (Model 3) in meta-analysis of five cohorts. MPP, the Malmö Preventive
Project; ARIC, the Atherosclerosis Risk in Communities Study; CHS, the Cardiovascular Health Study; Framingham, the Framingham Heart
Study; Rotterdam, the Rotterdam Study; OR, odds ratio; CI, confidence interval.
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Association between blood pressure gene
variants and orthostatic systolic blood
pressure response
Two BP-associated gene variants demonstrated a nominal associ-
ation with orthostatic SBP response (see Supplementary material
online, Table S2): rs11191548 in the crude model (est.

coefficient ¼ 20.269, 20.484 to 20.055; P ¼ 0.014) and
rs7129220 in the adjusted model (est. coefficient ¼ 0.222, 0.011–
0.433; P ¼ 0.039) (see Supplementary material online, Figure S1).
The minor allele of the latter, which is associated with higher
resting BP, confers a more pronounced decrease in SBP on standing.
The most plausible gene candidate in the vicinity of rs7129220 is
ADM coding for a precursor of vasodilatory peptide adrenomedullin.

Figure 5 Forest plot for association between rs198358 (C/T) and orthostatic hypotension (OH) according to the adjusted logistic regression
model after exclusion of participants taking antihypertensive drugs (Model 3) in meta-analysis of five cohorts. MPP, the Malmö Preventive
Project; ARIC, the Atherosclerosis Risk in Communities Study; CHS, the Cardiovascular Health Study; Framingham, the Framingham Heart
Study; Rotterdam, the Rotterdam Study; OR, odds ratio; CI, confidence interval.

Figure 6 Forest plot for association between rs5068 (G/A) and orthostatic hypotension (OH) according to the adjusted logistic regression
model after exclusion of participants taking antihypertensive drugs (Model 3) in meta-analysis of five cohorts. MPP, the Malmö Preventive
Project; ARIC, the Atherosclerosis Risk in Communities Study; CHS, the Cardiovascular Health Study; Framingham, the Framingham Heart
Study; Rotterdam, the Rotterdam Study; OR, odds ratio; CI, confidence interval.

A. Fedorowski et al.2338

http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs058/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs058/-/DC1
http://eurheartj.oxfordjournals.org/lookup/suppl/doi:10.1093/eurheartj/ehs058/-/DC1


Discussion
A marked BP decline in response to postural change can be due to
such aetiological factors as disorders of the autonomic nervous
system, volume status, cardiac function, use of pharmacological
agents, and advancing age.27,28 In parallel, it is not clear to what
extent propensity towards OH is heritable. Here, we report that
several of the newly discovered loci involved in the regulation of
resting BP may be potentially implicated in the pathogenesis of
OH. Although the overall association between common BP gene
variants and OH was weak (24 of 31 SNPs showing no association
at all), we identified one significant and four nominally associated
loci (Table 3) on four chromosomes (see Supplementary material
online, Figure S2).

The first locus is indicated by rs11191548, which is situated in
the 3′untranslated region near the gene encoding cytochrome
P450 enzyme CYP17A1. This enzyme is responsible for steroid
17a-hydroxylase and 17, 20-lyase activity, necessary for both dehy-
droepiandrosterone and cortisol synthesis. Mutations associated
with reduced activity of CYP17A1 result in 11-deoxycorticosterone
and corticosterone excess. These two aldosterone precursors
demonstrate a weak mineralocorticoid activity. Clinically, an inher-
ited 17a-hydroxylase deficiency leads to adrenal hyperplasia,
hypertension, hypokalaemic alkalosis, and suppression of the
renin–angiotensin system, which causes a decreased aldosterone
synthase expression and a very low level of circulating aldoster-
one.29,30 An association between rs11191548 variance and
CYP17A1 activity has not yet been established. However, the
minor allele of this SNP is associated with lower supine BP (and
lower odds for OH), which could be compatible with higher en-
zymatic activity of CYP17A1 (Table 3). Thus, higher CYP17A1 ac-
tivity could result in a normally responsive synthesis of
aldosterone, whereas the adrenal cortex could have a relatively
greater capacity of cortisol production. Consequently, the minor
allele of rs 11191548 would be associated with a more effective
adrenal response (i.e. a relatively higher production of both

aldosterone and cortisol) on orthostatic challenge, thus reducing
OH risk by augmenting vascular tone and intravascular volume.31

Additional experimental work would be required to support this
hypothesis. The second locus indicated by rs1173771, which is
situated in the intergenic region, encompasses the gene coding
for NPR3. Genetic variant in this locus may reduce production of
NPR-C or reduce clearance of natriuretic peptides by altering
the function of NPR-C, thus lowering the resting BP, as suggested
by a recent study.32 As hypertension is a strong correlate of OH,6

this mechanism may protect from an orthostatic BP fall. The third
identified genetic variant, rs11953630, was the only one to remain
statistically significant after the Bonferroni adjustment. This SNP is
situated in the intergenic region between CLINT1 and EBF1, for
which a plausible physiological mechanism has not been yet pro-
posed. However, the genetic polymorphism within the EBF1
locus has been recently linked to primary Sjögren’s syndrome,33

which is frequently associated with autonomic dysfunction and
OH.34 The fourth nominally associated with OH locus, NPPA/
NPPB, encompasses genes coding for the natriuretic peptides,
ANP and BNP. The minor alleles of rs198358 and rs5068, both
situated in the 3′untranslated region, have previously been asso-
ciated with higher levels of circulating ANP and BNP and lower
supine BP.19 In parallel, the minor allele of rs17367504, which is
localized in an intron of MTHFR gene in the vicinity of NPPA/
NPPB, was associated with lower BP in a recent GWAS.20 The un-
coupling of the directionality between supine BP and OH is inter-
esting in the light of previously published data suggesting that
hypertension (or higher SBP) is one of the strongest determinants
of OH.6,35 Natriuretic peptides are known for their vasodilatory
and extracellular volume-reducing properties.36 These effects can
be partially explained by their negative action on renin and aldos-
terone release, in addition to direct effects on the kidney and vas-
culature. Moreover, natriuretic peptides exert effects on
ANS-related compensatory reflexes by reducing the sensitivity of
cardiac and pulmonary chemo- and baroreceptors, and by attenu-
ating renal sympathetic activity.37 Thus, the main regulatory
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Table 3 Summary of potential common genetic polymorphism effects on blood pressure, orthostatic hypotension and
orthostatic systolic blood pressure response

SNP ID Gene locus Minor allele effect on

Postulated biological
mechanism

Blood
pressure

Orthostatic
hypotension

Orthostatic systolic blood
pressure fall

rs11191548 CYP17A1—NT5C2 CYP17A1 �? � � �
rs1173771 NPR3—C5orf23 NPR-C � � � —

rs11953630* EBF1 Autoimmune �? � � —

rs17367504 MTHFR—NPPB ANP/BNP �? � � —

rs198358 NPPA/NPPB ANP/BNP � � � —

rs5068 NPPA/NPPB ANP/BNP � � � —

rs7129220 ADM ADM �? � — �

SNP, single nucleotide polymorphism; CYP17A1, cytochrome P450 enzyme CYP17A1; NPR-C, natriuretic peptide clearance receptor; ANP, atrial natriuretic peptide; BNP,
B-type natriuretic peptide; ADM, adrenomedullin.
*Statistically significant after Bonferroni adjustment (P , 0.0016).
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mechanisms responsible for cardiac output, vascular tone, and
intravascular volume control, which are crucial for maintenance
of BP on standing, may be negatively influenced by chronically ele-
vated levels of natriuretic peptides. More interestingly, the effects
of NPPA/NPPB variants were observed only among those subjects
who were not on anti-hypertensive treatment. Taking into
account that most study participants were recruited during ‘the
diuretics era,’ it seems very likely that pharmacologically poten-
tiated urine production might blunt the impact of genetically
altered natriuretic peptides levels on orthostatic response. The
fifth locus implied by rs7129220 encompasses the gene encoding
precursor of adrenomedullin, a potent direct vasodilator with
natriuretic and diuretic properties secreted predominantly by
endothelium.38 The minor allele at this position, associated with
higher resting BP, increases the risk of a BP fall on standing
(Table 3), which is concordant with previous studies on the rela-
tionship between OH and hypertension.6,35

Study limitations
Our study has several limitations. Firstly, the discovery populations
for genetic BP associations were partially the same as cohorts,
which were included in this study. Secondly, orthostatic BP mea-
surements were taken on one occasion and we were not able to
identify participants with temporary vs. persistent OH. Thirdly,
the OH phenotype differed slightly between cohorts (supine
rest ranged from 5 to 20 min and standing BP was taken after
1–3 min). Thus, the overall OH prevalence may have been under-
estimated as patients with initial (within the first minute of stand-
ing)39 and delayed OH (after 3 min of standing)40 could not be
detected. Moreover, CYP17A1 activity, NPR-C function, and con-
centration as well as the adrenomedullin-circulating level were not
determined in the study sample. Finally, out of five identified loci,
only one (EBF1) was significantly associated with OH after the
Bonferroni adjustment. However, we had a specific hypothesis
behind each of the genotype–phenotype tests performed. Given
the strong physiological and epidemiological link between BP and
OH, we cannot exclude that any SNP indisputably associated
with resting BP and nominally with orthostatic BP response repre-
sents a valid finding limited by the statistical power of studied
populations. For the assumed significance level of 0.0016 and a
minor allele frequency of 25%, if the true per-minor-allele odds
ratio for OH was 1.1, we would need to study 9392 cases and
131 488 controls to be able to reject the null hypothesis with a
probability of 0.8. On the other hand, the size of the studied
sample allowed correctly excluding effects, which exceeded the
odds ratio of 1.20 per minor allele.

In summary, although we generally observed weak associations
between BP gene variants and OH, we identified five loci potentially
involved in disorders of orthostatic homoeostasis. Interestingly,
alleles associated with higher resting BP translated into both
higher (CYP17A1, NPR3-C5orf23, and EBF1 loci) and lower
(NPPA/NPPB locus) risk of OH. These findings need validation
in cohorts with more accurate or standardized phenotyping of
orthostatic BP response; however, they may be helpful in under-
standing mechanisms leading to OH.
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online.
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