50 research outputs found

    The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    Get PDF
    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 Όm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea

    Combining Litter Observations with a Regional Ocean Model to Identify Sources and Sinks of Floating Debris in a Semi-enclosed Basin: The Adriatic Sea

    Get PDF
    Visual ship transect surveys provide crucial information about the density, and spatial distribution of floating anthropogenic litter in a basin. However, such observations provide a ‘snapshot’ of local conditions at a given time and cannot be used to deduce the provenance of the litter or to predict its fate, crucial information for management and mitigation policies. Particle tracking techniques have seen extensive use in these roles, however, most previous studies have used simplistic initial conditions based on bulk average inputs of debris to the system. Here, observations of floating anthropogenic macro debris in the Adriatic Sea are used to define initial conditions (number of particles, location, and time) in a Lagrangian particle tracking model. Particles are advected backward and forward in time for 60 days (120 days total) using surface velocities from an operational regional ocean model. Sources and sinks for debris observed in the central and southern Adriatic in May 2013 and March 2015 included the Italian coastline from Pescara to Brindisi, the Croatian island of Mljet, and the coastline from Dubrovnik through Montenegro to Albania. Debris observed in the northern Adriatic originated from the Istrian peninsula to the Italian city of Termoli, as well as the Croatian island of Cres and the Kornati archipelago. Particles spent a total of roughly 47 days afloat. Coastal currents, notably the eastern and western Adriatic currents, resulted in large alongshore displacements. Our results indicate that anthropogenic macro debris originates largely from coastal sources near population centers and is advected by the cyclonic surface circulation until it strands on the southwest (Italian) coast, exits the Adriatic, or recirculates in the southern gyreVersión del edito

    Microplastic study reveals the presence of natural and synthetic fibres in the diet of King Penguins (Aptenodytes patagonicus) foraging from South Georgia

    Get PDF
    The Antarctic Circumnavigation Expedition (ACE) was a research cruise of the Swiss Polar Institute, supported by funding from the ACE Foundation. Funding for this research was provided by the ACE Foundation (projects 5 and 19), the Natural Environment Research Council’s Collaborative Antarctic Science Scheme (CASS-129) and a Trans-Antarctic Association Grant to RBS.Marine ecosystems are experiencing substantial disturbances due to climate change and overfishing, and plastic pollution is an additional growing threat. Microfibres are among the most pervasive pollutants in the marine environment, including in the Southern Ocean. However, evidence for microfibre contamination in the diet of top predators in the Southern Ocean is rare. King Penguins (Aptenodytes patagonicus) feed on mesopelagic fish, which undergo diel vertical migrations towards the surface at night. Microfibres are concentrated in surface waters and sediments but can also be concentrated in fish, therefore acting as contamination vectors for diving predators feeding at depth. In this study, we investigate microfibre contamination of King Penguin faecal samples collected in February and March 2017 at South Georgia across three groups: incubating, chick-rearing and non-breeding birds. After a KOH digestion to dissolve the organic matter and a density separation step using a NaCl solution, the samples were filtered to collect microfibres. A total of 77% of the penguin faecal samples (36 of 47) contained microfibres. Fibres were measured and characterized using Fourier-Transform Infrared spectroscopy to determine their polymeric identity. Most fibres (88%) were made of natural cellulosic materials (e.g. cotton, linen), with only 12% synthetic (e.g. polyester, nylon) or semi-synthetic (e.g. rayon). An average of 21.9 ± 5.8 microfibres g−1 of faeces (lab dried mass) was found, with concentrations more than twice as high in incubating penguins than in penguins rearing chicks. Incubating birds forage further north at the Antarctic Polar Front and travel longer distances from South Georgia than chick-rearing birds. This suggests that long-distance travelling penguins are probably more exposed to the risk of ingesting microfibres when feeding north of the Antarctic Polar Front, which might act as a semi-permeable barrier for microfibres. Microfibres could therefore provide a signature for foraging location in King Penguins.Publisher PDFPeer reviewe

    Proof of concept for a new sensor to monitor marine litter from space

    Get PDF
    Worldwide, governments are implementing strategies to combat marine litter. However, their effectiveness is largely unknown because we lack tools to systematically monitor marine litter over broad spatio-temporal scales. Metre-sized aggregations of floating debris generated by sea-surface convergence lines have been reported as a reliable target for detection from satellites. Yet, the usefulness of such ephemeral, scattered aggregations as proxy for sustained, large-scale monitoring of marine litter remains an open question for a dedicated Earth-Observation mission. Here, we track this proxy over a series of 300,000 satellite images of the entire Mediterranean Sea. The proxy is mainly related to recent inputs from land-based litter sources. Despite the limitations of in-orbit technology, satellite detections are sufficient to map hot-spots and capture trends, providing an unprecedented source-to-sink view of the marine litter phenomenon. Torrential rains largely control marine litter inputs, while coastal boundary currents and wind-driven surface sweep arise as key drivers for its distribution over the ocean. Satellite-based monitoring proves to be a real game changer for marine litter research and management. Furthermore, the development of an ad-hoc sensor can lower the minimum detectable concentration by one order of magnitude, ensuring operational monitoring, at least for seasonal-to-interannual variability in the mesoscale.Junta de AndalucĂ­a (Spain) Ministerio de Ciencia e InnovaciĂłn (Spain) European Commission (European Union) Universidad de CĂĄdiz (Spain) Ocean+ European Space Agency (France) EMME12 pĂĄgina

    The physical oceanography of the transport of floating marine debris

    Get PDF
    Marine plastic debris floating on the ocean surface is a major environmental problem. However, its distribution in the ocean is poorly mapped, and most of the plastic waste estimated to have entered the ocean from land is unaccounted for. Better understanding of how plastic debris is transported from coastal and marine sources is crucial to quantify and close the global inventory of marine plastics, which in turn represents critical information for mitigation or policy strategies. At the same time, plastic is a unique tracer that provides an opportunity to learn more about the physics and dynamics of our ocean across multiple scales, from the Ekman convergence in basin-scale gyres to individual waves in the surfzone. In this review, we comprehensively discuss what is known about the different processes that govern the transport of floating marine plastic debris in both the open ocean and the coastal zones, based on the published literature and referring to insights from neighbouring fields such as oil spill dispersion, marine safety recovery, plankton connectivity, and others. We discuss how measurements of marine plastics (both in situ and in the laboratory), remote sensing, and numerical simulations can elucidate these processes and their interactions across spatio-temporal scales

    Plastic accumulation in the Mediterranean Sea

    Get PDF
    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region

    The future of ocean plastics: designing diverse collaboration frameworks

    Get PDF
    This paper aims to guide the stakeholder engagement process related to plastic pollution research in marine environments. We draw on advice identified during an online workshop (Ocean Plastic Workshop 2022) organized by Early Career Ocean Professionals (ECOPs) from 11 countries, held in April 2022. International experts and workshop participants discussed their experiences in the collaborative development and implementation of ocean plastic pollution projects held worldwide, guided by three main questions: (i) What is the role of scientists in a multi-stakeholder project? (ii) How should scientists communicate with other stakeholders? (iii) Which stakeholders are missing in collaborative projects, and why are they missing? This multidisciplinary, co-learning approach highlights the value of stakeholder engagement for ocean plastic projects with an end goal to identify and implement ocean plastic solutions via innovative technologies, informing policy, community engagement, or a combination of all three approaches. The target outcomes of the workshop described in this paper include the identification of transdisciplinary (academic-stakeholder) engagement frameworks and specific suggestions that can serve as guidelines for the development of future plastic pollution projects

    Proximity to coast and major rivers influence the density of floating microplastics and other litter in east African coastal waters

    No full text
    Floating anthropogenic litter occurs in all ocean basins, yet little is known about their distribution and abundance in the coastal waters off east Africa. Neuston net and bulk water sampling shows that meso- and micro-litter (8567 ± 19,684 items∙km−2, 44 ± 195 g∙km−2) and microfibres (2.4 ± 2.6 fibres∙L−1) are pervasive pollutants off the coasts of Tanzania and northern Mozambique, with higher litter loads off Tanzania. Densities of meso- and micro-litter at the start of the rainy season were greater close to the coast and to major river mouths, suggesting that much litter likely originates on land. However, the mass of litter increased with distance from the six major coastal cities. By number, 95% of meso- and micro-litter was plastic, but only 6% of microfibres. Our results highlight the need to reduce plastic use and improve solid waste management in the region

    Floating macro- and microplastics around the Southern Ocean: results from the Antarctic Circumnavigation Expedition

    No full text
    While macroplastics have been washing up on Southern Ocean islands for decades and microplastics have been found in seabirds from the region since 1960, there are still relatively few quantitative data on the amount of plastic pollution, especially with regard to floating plastics, at high southern latitudes. We present a baseline estimate of the abundance of floating plastics around the Southern Ocean from a survey of floating macro-, meso- and microplastic pollution conducted during the Antarctic Circumnavigation Expedition in 2016/17. A total of 40 net trawls and 626 h of observation were performed during this survey. Of these, 33 net samples and 552 h of observation were made in polar waters south of the Subtropical Front (STF). Only 5 microplastics and 17 macrolitter items were observed south of the STF, confirming the Southern Ocean as the region with the lowest concentrations of plastic pollution globally. The mean concentrations of floating macrolitter (0.02–0.03 items·km) and small plastic fragments (188 ± 589 particles·km) south of the STF were one order of magnitude lower than in adjacent temperate waters north of the STF, which suggests that the STF acts as a barrier to the southward transport of floating debris. Despite their much lower density, the mass of macroplastics was similar to that of floating microplastics in the Southern Ocean
    corecore