111 research outputs found
The evolution of irradiance detection: melanopsin and the non-visual opsins
Circadian rhythms are endogenous 24 h cycles that persist in the absence of external time cues. These rhythms provide an internal representation of day length and optimize physiology and behaviour to the varying demands of the solar cycle. These clocks require daily adjustment to local time and the primary time cue (zeitgeber) used by most vertebrates is the daily change in the amount of environmental light (irradiance) at dawn and dusk, a process termed photoentrainment. Attempts to understand the photoreceptor mechanisms mediating non-image-forming responses to light, such as photoentrainment, have resulted in the discovery of a remarkable array of different photoreceptors and photopigment families, all of which appear to use a basic opsin/vitamin A-based photopigment biochemistry. In non-mammalian vertebrates, specialized photoreceptors are located within the pineal complex, deep brain and dermal melanophores. There is also strong evidence in fish and amphibians for the direct photic regulation of circadian clocks in multiple tissues. By contrast, mammals possess only ocular photoreceptors. However, in addition to the image-forming rods and cones of the retina, there exists a third photoreceptor system based on a subset of melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). In this review, we discuss the range of vertebrate photoreceptors and their opsin photopigments, describe the melanopsin/pRGC system in some detail and then finally consider the molecular evolution and sensory ecology of these non-image-forming photoreceptor systems
Kinematics of Mass Transport Deposits revealed by magnetic fabrics
This study was supported by the Israel Science Foundation (ISF grants No. 1245/11 and 1436/14). We thank the Editor A. V. Newman and the reviewers M. Jackson and B. Almqvist, whose comments and suggestions improved the quality of our manuscript. The laboratory assistance of Ran Issachar and Daniel Zvi is highly acknowledged. All data used in this analysis is presented in Figures 1-4 and Table 1. Correspondence and requests for materials should be addressed to R.W. ([email protected]).Peer reviewedPublisher PD
Adaptation of pineal expressed teleost exo-rod opsin to non-image forming photoreception through enhanced Meta II decay
Photoreception by vertebrates enables both image-forming vision and non-image-forming responses such as circadian photoentrainment. Over the recent years, distinct non-rod non-cone photopigments have been found to support circadian photoreception in diverse species. By allowing specialization to this sensory task a selective advantage is implied, but the nature of that specialization remains elusive. We have used the presence of distinct rod opsin genes specialized to either image-forming (retinal rod opsin) or non-image-forming (pineal exo-rod opsin) photoreception in ray-finned fish (Actinopterygii) to gain a unique insight into this problem. A comparison of biochemical features for these paralogous opsins in two model teleosts, Fugu pufferfish (Takifugu rubripes) and zebrafish (Danio rerio), reveals striking differences. While spectral sensitivity is largely unaltered by specialization to the pineal environment, in other aspects exo-rod opsins exhibit a behavior that is quite distinct from the cardinal features of the rod opsin family. While they display a similar thermal stability, they show a greater than tenfold reduction in the lifetime of the signaling active Meta II photoproduct. We show that these features reflect structural changes in retinal association domains of helices 3 and 5 but, interestingly, not at either of the two residues known to define these characteristics in cone opsins. Our findings suggest that the requirements of non-image-forming photoreception have lead exo-rod opsin to adopt a characteristic that seemingly favors efficient bleach recovery but not at the expense of absolute sensitivity
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
Recommended from our members
Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations.
Myosin Vb (MYO5B) is a motor protein that facilitates protein trafficking and recycling in polarized cells by RAB11- and RAB8-dependent mechanisms. Biallelic MYO5B mutations are identified in the majority of patients with microvillus inclusion disease (MVID). MVID is an intractable diarrhea of infantile onset with characteristic histopathologic findings that requires life-long parenteral nutrition or intestinal transplantation. A large number of such patients eventually develop cholestatic liver disease. Bi-allelic MYO5B mutations are also identified in a subset of patients with predominant early-onset cholestatic liver disease. We present here the compilation of 114 patients with disease-causing MYO5B genotypes, including 44 novel patients as well as 35 novel MYO5B mutations, and an analysis of MYO5B mutations with regard to functional consequences. Our data support the concept that (1) a complete lack of MYO5B protein or early MYO5B truncation causes predominant intestinal disease (MYO5B-MVID), (2) the expression of full-length mutant MYO5B proteins with residual function causes predominant cholestatic liver disease (MYO5B-PFIC), and (3) the expression of mutant MYO5B proteins without residual function causes both intestinal and hepatic disease (MYO5B-MIXED). Genotype-phenotype data are deposited in the existing open MYO5B database in order to improve disease diagnosis, prognosis, and genetic counseling
Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.
Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes
DETERMINISTICALLY-MODIFIED INTEGRAL ESTIMATORS OF GRAVITATIONAL TENSOR
The Earth's global gravity field modelling is an important subject in Physical Geodesy. For this purpose different satellite gravimetry missions have been designed and launched. Satellite gravity gradiometry (SGG) is a technique to measure the second-order derivatives of the gravity field. The gravity field and steady state ocean circulation explorer (GOCE) is the first satellite mission which uses this technique and is dedicated to recover Earth's gravity models (EGMs) up to medium wavelengths. The existing terrestrial gravimetric data and EGM scan be used for validation of the GOCE data prior to their use. In this research, the tensor of gravitation in the local north-oriented frame is generated using deterministically-modified integral estimators involving terrestrial data and EGMs. The paper presents that the SGG data is assessable with an accuracy of 1-2 mE in Fennoscandia using a modified integral estimatorby the Molodensky method. A degree of modification of 100 and an integration cap size of for integrating terrestrial data are proper parameters for the estimator
- …