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ABSTRACT 

The Earth’s global gravity field modelling is an important subject in Physical 

Geodesy. For this purpose different satellite gravimetry missions have been designed 

and launched. Satellite gravity gradiometry (SGG) is a technique to measure the 

second-order derivatives of the gravity field. The gravity field and steady state ocean 

circulation explorer (GOCE) is the first satellite mission which uses this technique 

and is dedicated to recover Earth’s gravity models (EGMs) up to medium 

wavelengths. The existing terrestrial gravimetric data and EGM scan be used for 

validation of the GOCE data prior to their use. In this research, the tensor of 

gravitation in the local north-oriented frame is generated using deterministically-

modified integral estimators involving terrestrial data and EGMs. The paper presents 

that the SGG data is assessable with an accuracy of 1-2 mE in Fennoscandia using a 

modified integral estimatorby the Molodensky method. A degree of modification of 

100 and an integration cap size of 2.5o  for integrating 5 5  terrestrial data are 

proper parameters for the estimator.  

Keywords: Isotropic Kernels; Gravity Anomalies; Gravity Gradients; Modification; 

Simulation of Gravitational Tensor; Truncation Coefficients. 

 

RESUMO 

O modelo de campo de gravidade global da Terra é um assunto importante na 

geodésia física. Para este propósito, diferentes missões de satélites gravimétricos têm 
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sido construídas e lançadas. A gravimetria da gravidade de satlite – SGG – é uma 

técnica para medir os “derivativos de segunda ordem” do campo da gravidade. O 

campo de gravidade é a exploração da circulação do oceano em estado de equilíbrio 

pelo – GOCE- primeira missão com satélite que usa esta técnica e é dedicada para 

readquirir os modelos de gravidade da Terra – EGMs – em ondas de tamanho médio. 

Os dados gravimétricos terrestres existentes e os de varredura – EGM são usados para 

validar os dados do GOCE antes de serem usados. Nesta pesquisa, o tensor de 

gravitação na estrutura local orientada ao Norte argumenta que os dados SGG – 

gradiometria da gravidade de satélite – é acessível com uma precisão de 1 – 2 m. E 

em  Fennoscandia usando um estimador integral modificado pelo método de 

Molodensky. O grau de modificação de 100 e uma integração no tamanho de 2.5° 

para a integrada de 5’ x 5’ de dados terrestres são parâmetros apropriados para o 

estimador.  

Palavras-chave: Núcleo isotrópico; da gravidade; gradiente gravitacional; 

modificação; simulador de tensor gravitacional; coeficiente de truncamento.  

 

 

1. INTRODUCTION 

Satellite gravity gradiometry (SGG) is a space method for recovering the Earth’s 

gravity field from the second-order derivatives of the field. Delivering Earth’s gravity 

models (EGMs) with higher resolution than those recovered from former satellite 

gravimetry techniques is expected from these data. The gravity field and steady-state 

ocean circulation explorer (GOCE) mission (BALMINO et al. 1998, 2001, ESA 1999, 

ALBERTELLA et al. 2002, RUMMEL et al. 2002, DRINKWATER et al. 2003) was 

successfully launched on 17th March 2009 as the first satellite mission which used the 

SGG technique. So far GOCE has delivered EGMs todegree and order 250 

corresponding to a resolution of 60 km by 60 km. The second-order derivatives of the 

gravity field is measured by a gradiometer mounted on the GOCE spacecraft and 

validation of them is very important prior to their use for any purpose. Having 

erroneous observations leads to the deviation of the recovered gravity field from the 

true one and wrong interpretation for the geophysical phenomena.  

Numerous studies have been done in the Earth's gravity field modelling from 

SGG for years, but the idea of validating the SGG data was presented in a few 

different ways. In the following we divide the validation methods into two different 

categories: 

a) Validation of GOCE products 

 Today, the concentrations of the geodetic researchers are on the evaluation of 

the GOCE products determined by three different methods of time-wise (TIM), space-

wise (SPW) and direct (DIR); see Pail et al. (2011). Hirt et al. (2011) compared some 

of GOCE EGMs with terrestrial gravimetric data over Switzerland, Austria and 

astrogeodetic deflections over Europe. They observed some improvements between 

degrees 160–165 and 180–185. Gruber et al. (2011) compared some of the GOCE 

EGMs for reproducing the orbit of the Gravity recovery and Climate Experiment 



Romeshkani, M. ; Eshagh, M. 

 Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 21, no 1, p.189-212, jan-mar, 2015. 

1 9 1  

(GRACE) (Tapley et al. 2005) and concluded that they do not outperform the GRACE 

orbit; therefore, combination of GRACE and GOCE data is useful. They found 

significant improvements between degrees 50 and 200 for geoid computation goal. 

Janak and Pitonak (2011) evaluated the GOCE products in central Europe and 

Slovakia. They mentioned that TIM2 and SPW2 to degree 210 are much better than 

the previous releases to the same degree and GOCO02S (GOIGINGER et al. 2011) 

has a significant improvement comparing to GOCO01S (PAIL et al. 2010). Sprlak et 

al. (2012) did the same study in Norway and mentioned that the direct solutions are 

highly affected by a priori information and time-wise solution is more reliable. 

Abdalla et al. (2012) evaluated the GOCE EGMs in Sudan and concluded that the 

SPW1, SPW2, TIM1, TIM2 and GOCO01S are consistent with the local data. Abdalla 

and Tenzer (2012) validated EGMs in New Zealand. Guimaraes et al. (2012) tested 

the EGMs in Brazil and found out that TIM3 is much better than the previous ones, 

as expected. Eshagh and Ebadi (2013) also investigated different EGMs and evaluated 

them over Fennoscandia. So far evaluation of the GOCE EGMs was done based on 

comparison of the EGM products with external sources of data, like gravity anomaly, 

disturbing gravity, geoid and/or astrogeodetic deflections. However, it should be 

considered that the errors of EGMs have been also presented. Wanger and McAdoo 

(2012) noticed that the errors of GOCE EGMs are not realistic and tried to calibrate 

them based on EGM08 (Pavlis et al., 2008, 2012). Eshagh (2013) studied the 

reliability and calibration of GOCE EGMs as well. Eshagh and Ebadi (2014) 

presented a method for error calibration of some GOCE EGMs based on condition 

adjustment models.  

b) On board validation of GOCE data 

Bouman et al. (2003) has set up a calibration model based on the instrument 

(gradiometer) characteristics to validate the SGG data. Bouman and Koop (2003) 

presented an along-track interpolation method to detect the outliers. Their idea is to 

compare the along-track interpolated gradients with measured gradients. If the 

interpolation error is small enough, the differences should be predicted reasonably by 

an error model. Also, Bouman et al. (2004) concluded that the method of validation 

using high-low satellite-to-satellite tracking data fail unless a high-resolution EGM is 

available. Kern and Haagmans (2004) and Kern et al. (2005) presented an algorithm 

for detecting the outliers in the SGG data in the time domain.  

c) Validation of GOCE data by external sources of data 

The simplest methodis the direct comparison of the observed SGG data with the 

generatedones using an existing EGM; (see ESHAGH and ABDOLLAHZADEH 

2010, 2011). Also, Haagmans et al. (2002) and Kern and Haagmans (2004) used the 

extended Stokes and Hotine formulae for using the terrestrial gravimetric data for this 

purpose. Mueller et al. (2004) used the terrestrial gravity anomalies to generate them, 

and after that Wolf (2007) investigated the deterministic approaches to modify the 

integrals and validation. In fact, the spectral weighting scheme (SJÖBERG 1980 and 

1981 and WENZEl 1981) was used by Wolf (2007). Least-squares collocation (LSC) 

can be used for the same purpose and Tscherning et al. (2006) considered this method 
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and concluded that the SGG data are predictable with an error of 2-3 mE in the case 

of an optimal size of the collection area and optimal resolution of the data. Zielinski 

and Petrovskaya (2003) proposed a balloon-borne gradiometer to fly at 20-40 km 

altitude simultaneously with satellite mission and proposed downward continuation 

of satellite data and comparing them with balloon-borne data. Pail (2003) proposed a 

combined adjustment method supporting high quality gravity field information within 

the well-surveyed test area for the continuation of the local gravity field upward and 

validating the SGG data. Bouman et al. (2004) stated that there were some limitations 

in generating the SGG data using terrestrial gravimetry data and the EGMs. When 

such a model is used, higher degrees and orders of EGMs should be taken into account 

and the recent ones seem to be able to remove the greater part of the systematic errors. 

In their regional approach, they concluded that the bias of the SGG data can be 

recovered very well using LSC. Toth et al. (2005) investigated the generation of the 

SGG data using the Torsion balance data by LSC. Jarecki et al. (2006) did a similar 

study but by LSC and integral formulae without any modification. Sprlak and Novak 

(2014a) used the deflections of vertical for generating the gravity gradients at satellite 

level, also Sprlak and Novak (2014b) found integral relations between the GOCE and 

GRACE types of data which can be used for validation purpose of their data. The 

stochastic modification was used by Eshagh (2010a) to modify the second-order 

radial derivative of the extended Stokes formula. He proposed two methods of a) 

modification prior to derivative and b) derivative prior to modification. The former 

method is similar to the work done by Mueller et al. (2004) and Wolf (2007) but not 

in deterministic way of modification. Eshagh (2010b) also modified the second-order 

radial derivative of the Abel-Poisson formula in a least-squares sense to generate the 

second-order radial gradient at satellite level using an EGM and geoid model. The 

least-squares modification of the vertical-horizontal and horizontal-horizontal 

derivatives of the extended Stokes formula was done by Eshagh and Romeshkani 

(2011) and Romeshkani (2011) based on the theoretical study done for the possibility 

of this idea by Eshagh (2009a). 

d)  The present work 

This paper is very similar to the work presented by Eshagh and Romeshkani 

(2011) with the difference of investigating the deterministic methods of modifying 

the integral estimatorsfor generation of the SGG data instead of the stochastic ones. 

This study is important as the deterministic methods are much simpler than stochastic 

onesas they are solely dependent on the integration domain and not the quality of the 

data. However, this method is not optimal in statistical point of view. Wolf (2007) 

has done some studies about validation of the SGG data using integral formulae 

modified deterministically, but she considered limited number of methods for this 

goal. Here, we consider methods of Molodensky (1962), Vanicek-Kleusberg (1987), 

Meissl (1971), Heck and Grunningar (1987), Featherstone et al, (1998), Wong and 

Gore (1969) methods for modifying the integral estimators for generating the SGG 

data from the gravity anomalies at sea level.  
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2. SATELLITE GRAVITY GRADIOMETRY OBSERVABLES 

 The gravitational tensor contains second-order derivatives of the gravitational 

field. Geocentric frame, local north-oriented frame (LNOF), orbital frame, 

gradiometer frame are some well-known ones for studying this tensor. 

 Here and after, we use the LNOF in our mathematical presentations, which is 

defined as the frame whose z-axis is pointing upwards in the geocentric radial 

direction, the x-axis towards the north and the frame is right-handed, implying that 

they-axis is directed to the west. Having considered harmonicity of the gravitational 

potential, the gravitational tensor contains 5 independent elements. GOCE measured 

the second-order derivatives of gravitational potential, but since our goal is to use the 

gravity anomalies at sea level, we consider the derivatives of the disturbing potential 

(T). However, by removing the contribution of the normal gravity field from GOCE 

data, we can derive the second-order derivatives of T. In this study,we use T,and 

therefore,
zzT is named vertical-vertical (VV) gradient as it is the second-order 

derivative of T in the direction of the z-axis. The non-diagonal elements 
xzT and 

yzT  

are called vertical-horizontal (VH) gradients, as they are got from vertical and 

horizontal derivatives. The elements
xxT , 

yyT  and 
xyT are called horizontal-horizontal 

(HH) gradients as there is no derivative in the direction of the z-axis.   

 A gradient estimator is an integral formula connecting the gravity anomaly at 

sea level to gradients at satellite level. Due to the limited coverage of the terrestrial 

data, such integral formulaes hould be modified in such a way that the contribution 

of the far-zone data is minimised. Here, we use some deterministic approaches to 

modify the estimators and test theirs uccessfulness for the validation of VV, VH and 

HH gradients. Below we present these integral estimatorsand we call them VV, VH 

and HH estimators, respectively (see e.g. ESHAGH and ROMESHKANI 2011): 
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where is the geocentric angle between the integration and the computation points, 

0  the integration domain, g  the gravity anomaly at sea level and at the 

integration points, d  the surface integration elements   is the azimuth between 

the integration and computation points. 
0

nb , 
1

nb  and 
2

nb  are the parameters which are 

estimated according to the modification type. ng  is the Laplace harmonics of g  

at the computation point located at sea level.   and  are the longitude  and the co-

latitude of the computation point. Furthermore,  
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is the kernel of the integral terms and i  is a coefficient to specify the type of the 

integral estimator, i.e. when 0i   the estimator is related to Tzz, when 1i   to Txz 

and Tyz and when 2i   to Txx, Tyy and Tyx. Also,  
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where R is the radius of the reference sphere, r  the geocentric distance at the 

computation point and  cosniP   is the associated Legendre function of degree n.  

 

3. DETERMINISTIC MODIFICATION OF KERNELS 

Stokes’s (1849) solution to the geodetic boundary-value problem requires a global 

integration to compute the geoid height. To compute a geoid model by locally-limited 

data, Molodensky (1958) proposed an approach to minimise the contribution of far-
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zone data. In fact, he presented the first deterministic modification method for the 

Stokes’s formula. After him, de Witte (1967); Wong and Gore (WG) (1969), Meissl 

(1971), Heck and Gruninger (HG) (1987), Vanicek and Kleusberg (VK) (1987), 

Vanicek and Sjöberg (1991), Featherstone et al. (FEO) (1998), Evans and 

Featherstone (2000) invented different deterministic methods for the same purpose. 

In Table 1, we summarise some of these methods which are developed for the SGG 

data and the estimators presented in Eqs. (1)- (3). In fact, this table presents the 

mathematical formulae of the modified kernels based on each deterministic approach 

and the truncation coefficient of the corresponding integral formulae.  

 

Table 1 - Mathematical formulae of modified kernels and truncation coefficients of 

corresponding integral formulae according to methods of Meissl, Wong and Gore 

(WG), Heck and Gruningar (HG), Molodensky (Mol), Vanicek and Kleusberg 

(VK), and Featherstone, Evans and Oliver (FEO). 
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where  
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 , i =0, 1 or 2,          (7) 

are the Paul coefficients of order 0, 1 and 2 and Paul (1973) proposed a recursive 

formula to generate zero-order one. Eshagh (2010b) presented the following recursive 

formulae for the first- and second-order Paul coefficients: 
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4. NUMERICAL INVESTIGATIONS 

 In order to perform a numerical investigation into the estimation of the SGG 

data at the 250 km level, the EIGEN-51C geopotential model (Bruinsma et al. 2010) 

is used as a reference EGM for generating the gravity anomaly and gravity gradients 

for our simulation study. The aim is to use the gravity anomalies and the 

deterministically-modified integral estimators to produce the SGG data and compare 

their corresponding ones to those generated by the EGM. Through this study, the 

Tscherning-Rapp’s (1974) model is used for generating the signal spectra of the 

gravity anomaly. Eshagh (2009c) showed that the results of the modification of the 

Stokes formula in the case of using this model and EGM08 (Pavlis et al. 2008) are 
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more or less the same and there is no need to use EGM08 for generating the signal 

spectra. The truncation coefficients of the estimators are simply generated by their 

spectral forms. Eshagh (2010a) showed that because of the inclusion of the parameters 
0

n ,
1

n and 
2

n  the series will be convergent due to the elevation of the 

satellite, but the series should be used to high degrees. He showed that a maximum 

degree of 5000 should be enough for this purpose. He also discussed that the recursive 

formulae presented by Shepperd (1982) are not suitable when the data are of satellite 

type. Shepperd (1982) mentioned that his formulae might be used for the altitudes 

below 20 km. 

 The cap size of integration and the degree of modification are two important 

factors which should be investigated for applying any integral formula and should be 

specified through different numerical studies. Therefore, we divide our numerical 

investigations into two parts, in the first part, the behaviours of the deterministically-

modified kernels are presented, in the second one, the SGG data are generated using 

the gravity anomalies at sea level by using the modified integral estimators.  

 

4.1 Behaviours of Isotropic Parts of the Modified Kernels  

 Now, the isotropic parts of the kernels of the integral estimators (1), (2) and (3) 

are presented. The significance of the far-zone gravity anomalies depends on these 

parts of the kernels. Plotting these isotropic functions shows that whether the 

modification has been done successfully or not. Also, it can somehow give an idea 

about the significance of the data being integrated and the cap size of integration. 

Eshagh (2014) mentioned that the contribution of the far-zone data was also 

dependent on the type of the data being integrated.  

 

Figure 1 - Isotropic parts of kernels of the (a) VV,(b) VH and (c) HH integral 

estimator before and after modification 
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 Figures 1a, 1b and 1c present the behaviours of the isotropic parts of the kernels 

of the VV, VH and HH estimators. A cap size ( 0  ) of 3
o

and a degree of 

modification (L) of 150 have been selected in all of the modification processes. These 

figures illustrate that the modified kernels by the WG and HG methods have similar 

behaviours. According to these two modified kernels, the contribution of terrestrial 

data in the integral term of the estimator is less than the second term presented by a 
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series. Therefore, 0 plays a less significant role, but the opposite is true for the 

degree modification. 

 The modified kernels by the VK and Mol modifications are almost 

coincidedandshow that the terrestrial data have the same contribution in their 

corresponding estimators. Featherstone (2003) presented that the fluctuation of the 

spheroidal Stokes kernel is because of the oscillations of the low-degree Legendre 

polynomials, and this fluctuation grows with the degree of spheroidal modification. 

Large oscillations of the kernels cause difficulties in their numerical implementations 

of the integral part of the estimators. Since the value of the non-modified kernels at 

the rim of integration cap that is close to zero, therefore, the modified kernel by the 

Meissl method almost coincidesthe original kernel. 

 The values of the non-modified kernels of the HH and VH estimators are not small 

at the rim of 0 therefore the modified kernels by the Meissl method deviate from the 

non-modified ones. In fact, the Meissl modification needs to determine 0 by 

minimising the mean squared errorof the estimator in a least-square sense.Because of 

the limited coverage of the terrestrial data this is not always useful. To achieve the 

minimum mean squared error, we take its derivative respect to  0,S r   and equate the 

result to zero (SJÖBERG and HUNEGNAW 2000). For minimising the contribution of 

the far-zone terrestrial data in the modified estimators, the kernel values should be close 

to zero outside the integration domain. As can be seen, Figure 1 shows this issue for the 

modified kernels, by comparing them to the original ones, especially for the modified 

kernels of the VH and HH estimators. This can somehow show that the modification 

processes have been successful.The system of equations from which the modification 

parameters are obtained is ill-conditioned for the VH and HH estimators (ESHAGH, 

2010a). This is due to inclusion of 
i

ku  in the mathematical expressions of the elements 

of the coefficient matrix of the systems. 
i

ku  increases unboundedly and for large degree 

of modifications, the system will be even more unstable. However, this instability is 

harmless and modification of the estimators will be successful if a simple regularisation 

method is used for solving the system Eshagh (2010a). 

 

4.2 Generation of Satellite Gravity Gradiometry Data Using Modified Integral 

Estimators Over Fennoscandia 

 A grid of the terrestrial gravity anomalies is produced using the EIGEN-51C 

model to degree and order 360 with a resolution of 5 5  at sea level in 

Fennoscandia, limited between the latitudes 50° N and 75° N and the longitudes 0° E 

and 35° E. The SGG data in the LNOF are generated using the same model and the 

nonsingular formulae of the gravity gradients presented by Eshagh (2009a,b). Here, 

our idea is to regenerate them from the simulated gravity anomalies by using the 
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modified integral estimators. It should be stated that, the use of EIGEN-51C to degree 

and order 360 is reasonable and any other EGM can be used in this respect. However, 

we cannot expect to recover the all frequencies to degree and order 360 due to the 

satellite elevation. The GOCE EGMs have been computed to degree and order 250.  

We have generated the gravity anomalies with a resolution of 5 5   to reduce the 

discretisation error in the integration process but we know that recovering higher 

frequencies than 250 is not meaningful. Table 2 shows the statistics of the mentioned 

gravity anomalies and the SGG data at 250 km level and Figure 3 shows their maps 

over Fennoscandia.  

 

Table 2 - Statistics of gravity anomalies and SGG data in Fennoscandia 

 

 Max  Mean  Min  Std  

zzT  (1 E) 0.430 -0.002 -0.455 0.187 

xzT  (1 E) 0.391 0.000 -0.260 0.036 

yzT (1 E) 0.210 -0.136 -0.479 0.026 

xxT (1 E) 0.187 -0.011 -0.267 0.027 

yyT (1 E) 0.282 -0.028 -0.319 0.028 

xyT (1 E) 0.167 0.030 -0.122 0.017 

g  (1 mGal) 73.82 3.77 -54.69 3.88 

 

Figure 3 -  a) Gravity anomaly [mGal], b) 
xzT [E], c)

yzT  [E], d) 
xxT  [E], e)

yyT , f) 
xyT  

[E] and g) 
zzT (E) 
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 The differences between the SGG data derived from the EIGEN-51C and those 

from the gravity anomalies are regarded as the external errors of the estimators. In the 

following, different 
0  and L, are considered and tested to find the best conditions 

for the successful generation of the SGG data. 
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4.3 Test of Cap Size of Integration and Degree of Modification 

 Table 3 (see appendix) presents the statistics of the differences between the 

generated SGG data using the integral estimators modified to degree L = 150 and 

different  0 . Generally, it shows that the modified estimators can reproduce the SGG 

data with an error of about 1-2 mE. This level of error reduces insignificantly by 

increasing
0  meaning that 

0 = 2
o

is sufficient for integrating the gravity anomalies. 

The large value of L = 150  causes that the estimators become insensitive to the choice 

of 
0 . The generation of xx yyT T is successful with an error of less than 2 mE by 

some estimators and again the anomalies seem to have no impact on the quality of the 

estimated xx yyT T  and xyT .  

 This means that the series terms of their estimators are stronger than the integral 

ones and have more contribution to the estimates. The estimators, modified by the 

Meissl, HG and WG methods have this property. The errors of the estimates, derived 

by the modified estimators by MOL, increase withincreasing 0 . The reason is the 

dependence of these components to the second terms of their corresponding estimators 

so that by increasing 0
 
insignificant changes are seen in the results.  

Here, we test different L to see if the choice of a smaller L is successful according 

to the selected
0 . Having small L decreases the dependence of the estimators to the 

EGM and increases the contribution of the gravity anomalies in the integration domain. 

 Table 4 (see appendix) presents the statistics of the differences between the 

generated SGG data when L = 75.  

 It presents that the produced SGG data are more sensitive to 
0  than the case 

where L = 150, as expected. By selecting L = 75, the estimator will consider higher 

weight for the gravity anomalies than the EGM. Also, when 
0  = 3

o
 then zzT is 

generated with an error of less than 6 mE and xzT  with an acceptable accuracy level,

yzT with 5 mE error, but the rest of the SGG data with a lower accuracy level. One 

cannot find a method, which delivers the best results for all SGG data. As the table 

shows, the Molodensky modified estimators deliver almost the best estimates for zzT , 

xzT and yzT . 

 Also, the contribution of the integral term of the estimators of xx yyT T
 
and 

xyT is too small therefore, the best results derived by those estimators whose series 

terms are more precise and accurate. The estimators modified by the HG, WG and 
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Meissl methods have this property. In the case of using the MOL method the error 

increases with increasing 
0

 
due to the dependency of the estimators to the EGM. 

0  = 3
o

seems to be suitable for this purpose. Consequently, we keep this fixed and 

reduce L to find the best agreement between 
0  = 3

o
and L. Table 5 shows the results 

of this investigation. 

 Table 5 (see appendix) shows the statistics of the errors of the produced SGG data 

using the estimators modified with 
0  = 3

o
 at different L . As the table presents, by 

increasing L from 75 to 100, the errors of zzT , xzT  and yzT  reaches to 3 mE and xyT to 

7 mE. By considering L= 125 even smaller errors are seen in the SGG data, which 

means that considering larger L is not necessary. However, for generating some of the 

SGG data L = 150 is required. For reproducing the HH components L = 125 and 
0  = 

3
o

should be enough to reach to 2-3 mE error. As the table shows, the increase of L to 

175 leads to errors less than 1 mE. In short, for producing the SGG data,  
0  = 3

o
and 

L = 150 are suitable, but
0  = 3

o
and L = 125 can be suitable for some of the SGG 

data. In this table, the methods of WG and HG and Meissl exhibit best results when the 

contribution of the second terms increase with increasing  L to 175.  

 Now, we can test 
0  versus L> 75. The results are presented in Table 6 (see 

appendix). 
0

 
is decreased to 2

o
 and 2.5

o
 and L = 100 and L = 125 are considered. 

From the table, one can reach to accuracies of about 1-2 mE for xzT  and yzT ; and 2 mE 

for zzT . Therefore, their modified integral estimators with 
0  = 2.5

o
 and L = 100 

work properly.  Also, when L = 125 the SGG data an error of 2-3 mE can be produced 

with 
0  = 2

o
 and 

0  = 2.5
o

for the VV and VH gradients. This means that L = 125 

is suitable and the estimator is sensitive enough to 
0  and subsequently to the gravity 

anomalies. 

 

5. CONCLUDING REMARKS 

 The cap size of integration (
0 ) and the degree of modification (L), which are 

two important parameters to be selected before using the estimators, should beL=125 

and 
0 = 2.5

o
, the VV gradient can begenerated with an error less than 2 mE over 

Fennoscandia. The choices of L=150 and 
0 = 2.5

o
 lead to the same level of accuracy 
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for the VH gradients and L=125 and 
0 =3

o
for the HH gradients. Insignificant 

variations are seen in the quality of the generated gradients due to changes in the 

resolution of the terrestrial gravity anomalies. Our numerical studies show that, in most 

cases, the Molodenski modification delivers better results than the rest of the 

deterministic modification methods.  
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APPENDIX 

 

 

 

 

Table 3 -  Statistics of errors of generated SGG data at different 0  using modified 

estimators to L = 150 and 5 5   gravity anomalies at sea level. Unit: 1 mE. 
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Table 4 - Statistics of errors of generated gradients from 5 5   gravity anomalies at 

different 0  and L = 75. Unit: 1 mE. 
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Table 5 - Statistics of errors of generated gradients for 
0 3 o  at different degrees of 

modification. Unit: 1 mE. 
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Table 6 - Statistics of errors of generated gradients using the modified estimator with 

0 2  o  and 2.5o with L = 100 and 125 from 30 30   gravity anomalies. Unit: 1 mE. 

Mean (M). 

 
 


