245 research outputs found

    Position-sensitive Si pad detectors for electron emission channeling experiments

    Get PDF
    Position-sensitive detector systems, initially developed for the detection of X-rays, have been adapted for their use in electron emission channeling experiments. Each detection system consists of a 30.8x30.8 mm2^{2} 22x22 -pad Si detector, either of 0.3 mm, 0.5 mm or 1 mm thickness, four 128−-channel preamplifier chips, a backplane trigger circuit, a sampling analog to digital converter, a digital signal processor, and a personal computer for data display and storage. The operational principle of these detection systems is described, and characteristic features such as energy and position resolution and maximum count rate, which have been determined from tests with conversion electrons and ÎČ− ⁣\beta^-\! -particles in the energy range 40--600 keV, are presented

    Membrane-assisted enzymatic production of galactosyl-oligosaccharides from lactose in a continuous process

    Get PDF
    Functional foods such as oligosaccharides have attained significant acceptance in Japan and are attracting interest elsewhere. Beneficial physiological properties are attributed to oligosaccharides. Here, we describe the continuous production of oligosaccharides from a low-cost substrate (lactose) in a continuous membrane-assisted reactor (both polymeric and inorganic membranes were tested). Different enzymes, a number of feed concentrations, and different average residence times were investigated. The enzymes were used in their native form. Retention and recycling of the enzyme was successful, while the products together with some unreacted substrate and byproducts were removed as the ultrafiltration permeate. For the ultrafiltration, a steady-state flux of about 20 l/m2 hr was achieved. A maximum oligosaccharide concentration of over 40 %w/w was reached with an average residence time of 1 hr and a feed lactose concentration of 31 %w/w. Pilot scale experiments based on the laboratory tests are also reported

    Silicon detector for a Compton Camera in Nuclear Medical Imaging

    Get PDF
    Electronically collimated gamma ca\-me\-ras based on Com\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to 10510^5~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium (4399m^{\rm 99m}_{43}Tc) and americium (95241^{241}_{95}Am) were acquired with an energy resolution of 2.45~keV FWHM for the 140.5~keV photo-absorption line of 4399m^{\rm 99m}_{43}Tc. For all pads the discrimination threshold in the trigger chip was between (15 and 25)~keV

    R & D for collider beauty physics at the LHC

    Get PDF
    We propose an R&D program for the development of a Beauty trigger and innovative elements of the associated spectrometer. A series of short test runs is proposed at the SPS p-pbar Collider with the minimal spectrometer which will allow a credible B signal to be obtained in an invariant mass spectrum of reconstructed B mesons. The program builds on the success of the recent collider run of the P238 Collaboration, in which clean signals from beam-beam interactions were observed in a large silicon strip microvertex detector running 1.5 mm from the circulating beams. A continuing successful R&D program of the type proposed could ultimately lead to a collider experiment at the LHC to study CP Violation and rare B decays

    Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA

    Get PDF
    Inclusive photoproduction of D*+- mesons has been measured for photon-proton centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of 37 pb^-1. Total and differential cross sections as functions of the D* transverse momentum and pseudorapidity are presented in restricted kinematical regions and the data are compared with next-to-leading order (NLO) perturbative QCD calculations using the "massive charm" and "massless charm" schemes. The measured cross sections are generally above the NLO calculations, in particular in the forward (proton) direction. The large data sample also allows the study of dijet production associated with charm. A significant resolved as well as a direct photon component contribute to the cross section. Leading order QCD Monte Carlo calculations indicate that the resolved contribution arises from a significant charm component in the photon. A massive charm NLO parton level calculation yields lower cross sections compared to the measured results in a kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure

    Endovascular repair of aortic dissection and intramural hematoma: indications and serial changes

    Get PDF
    Thoracic aortic dissection (AD) is one of the most common aortic emergencies. It can be fatal if not promptly diagnosed and treated. Intramural hematoma (IMH) of the aorta is recognized as distinct from classic (double-barreled) AD. IMH also frequently leads to aortic emergency, which can be fatal unless rapidly diagnosed and treated.Recently, thoracic endovascular aortic repair (TEVAR) has been used for the treatment of complications caused by AD. TEVAR is also a viable option for the treatment of complicated IHM. In this article, we review the details of TEVAR as treatment options for AD and IMH, including the indications for TEVAR, imaging, and follow-up

    Activation of adherent vascular neutrophils in the lung during acute endotoxemia

    Get PDF
    BACKGROUND: Neutrophils constitute the first line of defense against invading microorganisms. Whereas these cells readily undergo apoptosis under homeostatic conditions, their survival is prolonged during inflammatory reactions and they become biochemically and functionally activated. In the present study, we analyzed the effects of acute endotoxemia on the response of a unique subpopulation of neutrophils tightly adhered to the lung vasculature. METHODS: Rats were treated with 5 mg/kg lipopolysaccharide (i.v.) to induce acute endotoxemia. Adherent neutrophils were isolated from the lung vasculature by collagenase digestion and sequential filtering. Agarose gel electrophoresis, RT-PCR, western blotting and electrophoretic mobility shift assays were used to evaluate neutrophil activity. RESULTS: Adherent vascular neutrophils isolated from endotoxemic animals exhibited decreased apoptosis when compared to cells from control animals. This was associated with a marked increase in expression of the anti-apoptotic protein, Mcl-1. Cells isolated 0.5–2 hours after endotoxin administration were more chemotactic than cells from control animals and expressed increased tumor necrosis factor-alpha and cyclooxygenase-2 mRNA and protein, demonstrating that they are functionally activated. Endotoxin treatment of the animals also induced p38 and p44/42 mitogen activated protein kinases in the adherent lung neutrophils, as well as nuclear binding activity of the transcription factors, NF-ÎșB and cAMP response element binding protein. CONCLUSION: These data demonstrate that adherent vascular lung neutrophils are highly responsive to endotoxin and that pathways regulating apoptosis and cellular activation are upregulated in these cells

    Quadrupole collectivity in Ca 42 from low-energy Coulomb excitation with AGATA

    Get PDF
    A Coulomb-excitation experiment to study electromagnetic properties of Ca42 was performed using a 170-MeV calcium beam from the TANDEM XPU facility at INFN Laboratori Nazionali di Legnaro. Îł rays from excited states in Ca42 were measured with the AGATA spectrometer. The magnitudes and relative signs of ten E2 matrix elements coupling six low-lying states in Ca42, including the diagonal E2 matrix elements of 21+ and 22+ states, were determined using the least-squares code gosia. The obtained set of reduced E2 matrix elements was analyzed using the quadrupole sum rule method and yielded overall quadrupole deformation for 01,2+ and 21,2+ states, as well as triaxiality for 01,2+ states, establishing the coexistence of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in Ca42. The experimental results were compared with the state-of-the-art large-scale shell-model and beyond-mean-field calculations, which reproduce well the general picture of shape coexistence in Ca42

    Superdeformed and Triaxial States in Ca 42

    Get PDF
    Shape parameters of a weakly deformed ground-state band and highly deformed slightly triaxial sideband in ^{42}Ca were determined from E2 matrix elements measured in the first low-energy Coulomb excitation experiment performed with AGATA. The picture of two coexisting structures is well reproduced by new state-of-the-art large-scale shell model and beyond-mean-field calculations. Experimental evidence for superdeformation of the band built on 0_{2}^{+} has been obtained and the role of triaxiality in the A∌40 mass region is discussed. Furthermore, the potential of Coulomb excitation as a tool to study superdeformation has been demonstrated for the first time

    Nicotinic receptors mediate stress-nicotine detrimental interplay via dopamine cells’ activity

    Get PDF
    Epidemiological studies report strong association between mood disorders and tobacco addiction. This high comorbidity requires adequate treatment but the underlying mechanisms are unknown. We demonstrate that nicotine exposure, independent of drug withdrawal effects, increases stress sensitivity, a major risk factor in mood disorders. Nicotine and stress concur to induce long-lasting cellular adaptations within the dopamine (DA) system. This interplay is underpinned by marked remodeling of nicotinic systems, causing increased ventral tegmental area (VTA) DA neurons’ activity and stress-related behaviors, such as social aversion. Blocking ÎČ2 or α7 nicotinic acetylcholine receptors (nAChRs) prevents, respectively, the development and the expression of social stress-induced neuroadaptations; conversely, facilitating α7 nAChRs activation specifically in the VTA promotes stress-induced cellular and behavioral maladaptations. Our work unravels a complex nicotine-stress bidirectional interplay and identifies α7 nAChRs as a promising therapeutic target for stress-related psychiatric disorders
    • 

    corecore