336 research outputs found

    Tests of QCD: Summary of DIS 2000

    Get PDF
    This summary of the working group 2 of DIS 2000 encompasses experimental and theoretical results of jet physics, open and bound state heavy flavour production, prompt photon production, next-to-leading order QCD calculations and beyond, instantons, fragmentation, event shapes, and power corrections, primarily from deep-inelastic scattering and photoproduction at HERA, but also from the LEP and Tevatron colliders.Comment: 16 pages, LaTeX, including 8 PostScript figures. Talk given at the 8th International Workshop on Deep-Inelastic Scattering (DIS2000), 25th-30th April 2000, Liverpool, England, to appear in the proceeding

    Status Of The FAIR Synchrotron Projects SIS18 And SIS100

    Get PDF
    A large fraction of the program to upgrade the existingheavy ion synchrotron SIS18 as injector for the FAIR synchrotron SIS100 has been successfully completed. With the achieved technical status, a major increase of theaccelerated number of heavy ions could be reached. Thenow available performance especially demonstrates thefeasibility of high intensity beams of medium charge stateheavy ions with a sufficient control of the dynamicvacuum and connected charge exchange loss. Two furtherupgrade measures, the installation of additional magneticalloy (MA) acceleration cavities and the exchange of themain dipole power converter, are presently beingimplemented. For the FAIR synchrotron SIS100, theprocurement of all major components with longproduction times has been started. With the delivery andtesting of several pre-series components, the phase ofoutstanding technical reserach and developments could becompleted and the readiness for series productionachieved

    Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates

    Full text link
    We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the dynamical Casimir emission of pairs of Bogoliubov phonons when the atom-atom scattering length is modulated in time. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical calculations of Hawking radiation from analog black holes

    The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro

    Get PDF
    The organs of a eudicot flower are specified by four functional classes, termed class A, B, C and E, of MADS domain transcription factors. The combinatorial formation of tetrameric complexes, so called ‘floral quartets’, between these classes is widely believed to represent the molecular basis of floral organ identity specification. As constituents of all complexes, the class E floral homeotic proteins are thought to be of critical relevance for the formation of floral quartets. However, experimental support for tetrameric complex formation remains scarce. Here we provide physico-chemical evidence that in vitro homotetramers of the class E floral homeotic protein SEPALLATA3 from Arabidopsis thaliana bind cooperatively to two sequence elements termed ‘CArG boxes’ in a phase-dependent manner involving DNA looping. We further show that the N-terminal part of SEPALLATA3 lacking K3, a subdomain of the protein–protein interactions mediating K domain, and the C-terminal domain, is sufficient for protein dimerization, but not for tetramer formation and cooperative DNA binding. We hypothesize that the capacity of class E MADS domain proteins to form tetrameric complexes contributes significantly to the formation of floral quartets. Our findings further suggest that the spacing and phasing of CArG boxes are important parameters in the molecular mechanism by which floral homeotic proteins achieve target gene specificity

    Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    Get PDF
    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studie
    corecore