46 research outputs found

    Protein Folding Database (PFD 2.0): an online environment for the International Foldeomics Consortium

    Get PDF
    The Protein Folding Database (PFD) is a publicly accessible repository of thermodynamic and kinetic protein folding data. Here we describe the first major revision of this work, featuring extensive restructuring that conforms to standards set out by the recently formed International Foldeomics Consortium. The database now adopts standards for data acquisition, analysis and reporting proposed by the consortium, which will facilitate the comparison of folding rates, energies and structure across diverse sets of proteins. Data can now be easily deposited using a rich set of deposition tools. Enhanced search tools allow sophisticated searching and graphical data analysis affords simple data analysis online. PFD can be accessed freely at

    Context-dependent nature of destabilizing mutations on the stability of fkbp12

    Get PDF
    ABSTRACT: The context-dependent nature in which mutations affect protein stability was investigated using the FK506-binding protein, FKBP12. Thirty-four mutations were made at sites throughout the protein, including residues located in the hydrophobic core, the -sheet, and the solvent-exposed face of the R-helix. Urea-induced denaturation experiments were used to measure the change in stability of the mutants relative to that of the wild type (∆∆G U-F ). The results clearly show that the extent of destabilization, or stabilization, is highly context-dependent. Correlations were sought in order to link ∆∆G U-F to various structural parameters. The strongest correlation found was between ∆∆G U-F and N, the number of methyl-(ene) groups within a 6 Å radius of the group(s) deleted. For mutations of buried hydrophobic residues, a correlation coefficient of 0.73 (n ) 16,where n is the number of points) was obtained. This increased to 0.81 (n ) 24) on inclusion of mutations of partially buried hydrophobic residues. These data could be superimposed on data obtained for other proteins for which similarly detailed studies have been performed. Thus, the contribution to stability from hydrophobic side chains, independent of the extent to which a side chain is buried, can be estimated quantitatively using N. This correlation appears to be a general feature of all globular proteins. The effect on stability of mutating polar and charged residues in the R-helix and -sheet was also found to be highly context-dependent. Previous experimental and statistical studies have shown that specific side chains can stabilize the N-caps of R-helices in proteins. Substitutions of Ile56 to Thr and Asp at the N-cap of the R-helix of FKBP12, however, were found to be highly destabilizing. Thus, the intrinsic propensities of an amino acid for a particular element of secondary structure can easily be outweighed by tertiary packing factors. This study highlights the importance of packing density in determining the contribution of a residue to protein stability. This is the most important factor that should be taken into consideration in protein design. To design novel proteins, or rationally alter existing ones, a quantitative understanding of the factors that affect the stability of the native state is required. For proteins without disulfide bonds, noncovalent interactionsssuch as hydrophobic interactions, hydrogen bonds, and electrostatic interactionssdetermine protein stability (1). Protein engineering studies have provided an abundance of information on the relationship between protein structure and stability. Studies on hydrophobic groups (2-13) have shown that the packing of nonpolar groups and burial of hydrophobic surface area are the dominant forces in the stabilization of proteins. Studies on both fully and partially buried hydrophobic residues in barnase, CI2, and staphylococcal nuclease have shown correlations between the change in protein stability upon mutation (∆∆G U-F ) and both the packing density [number of methyl(ene) groups within a certain radius of the nonpolar groups removed

    PFD: a database for the investigation of protein folding kinetics and stability

    Get PDF
    We have developed a new database that collects all protein folding data into a single, easily accessible public resource. The Protein Folding Database (PFD) contains annotated structural, methodological, kinetic and thermodynamic data for more than 50 proteins, from 39 families. A user-friendly web interface has been developed that allows powerful searching, browsing and information retrieval, whilst providing links to other protein databases. The database structure allows visualization of folding data in a useful and novel way, with a long-term aim of facilitating data mining and bioinformatics approaches. PFD can be accessed freely at http://pfd.med.monash.edu.au

    The REFOLD database: a tool for the optimization of protein expression and refolding

    Get PDF
    A large proportion of proteins expressed in Escherichia coli form inclusion bodies and thus require renaturation to attain a functional conformation for analysis. In this process, identifying and optimizing the refolding conditions and methodology is often rate limiting. In order to address this problem, we have developed REFOLD, a web-accessible relational database containing the published methods employed in the refolding of recombinant proteins. Currently, REFOLD contains >300 entries, which are heavily annotated such that the database can be searched via multiple parameters. We anticipate that REFOLD will continue to grow and eventually become a powerful tool for the optimization of protein renaturation. REFOLD is freely available at

    Age-dependent effects of protein restriction on dopamine release

    Get PDF
    FUNDING AND DISCLOSURE This work was supported by the Biotechnology and Biological Sciences Research Council [grant # BB/M007391/1 to J.E.M.], the European Commission [grant # GA 631404 to J.E.M.], The Leverhulme Trust [grant # RPG-2017-417 to J.E.M.] and the Tromsø Research Foundation [grant # 19-SG-JMcC to J. E. M.). The authors declare no conflict of interest. ACKNOWLEDGEMENTS The authors would like to acknowledge the help and support from the staff of the Division of Biomedical Services, Preclinical Research Facility, University of Leicester, for technical support and the care of experimental animals.Peer reviewedPublisher PD

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Guide to Geographical Indications: Linking Products and Their Origins (Summary)

    Full text link

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore