97 research outputs found

    Examining the inertial subrange with nanoscale cross-wire measurements of turbulent pipe flow at high Reynolds number near the centreline [post-print]

    Get PDF
    Highly resolved, two-component velocity measurements were made near the centreline of turbulent pipe flow for Reynolds numbers in the range . These unique data were obtained with a nanoscale cross-wire probe and used to examine the inertial subrange scaling of the longitudinal and transverse velocity components. Classical dissipation rate estimates were made using both the integration of one-dimensional dissipation spectra for each velocity component and the third-order moment of the longitudinal structure function. Although the second-order moments and one-dimensional spectra for each component showed behaviour consistent with local isotropy, clear inertial range similarity and behaviour were not exhibited in the third-order structure functions at these Reynolds numbers. When corrected for the effects of radial inhomogeneities at the centreline following the generalized expression of Danaila et al. (J. Fluid Mech., vol. 430, 2001, pp. 87-109), re-derived for the pipe flow domain, the third-order moments of the longitudinal structure function exhibited a clearer plateau per the classical Kolmogorov \u27four-fifths law\u27. Similar corrections described by Danaila et al. (J. Fluid Mech., vol. 430, 2001, pp. 87-109) applied to the analogous equation for the mixed structure functions (i.e. the \u27four-thirds law\u27) also yielded improvement over all ranges of scale, improving with increasing Reynolds number. The rate at which the \u27four-fifths\u27 law and \u27four-thirds\u27 law were approached by the third-order structure functions was found to be more gradual than decaying isotropic turbulence for the same Reynolds numbers

    Turbulent drag reduction by spanwise wall forcing. Part 1: Large-eddy simulation

    Get PDF
    Turbulent drag reduction through streamwise travelling waves of spanwise wall oscillation is investigated over a wide range of Reynolds numbers. Here, in Part 1, wall-resolved large-eddy simulations in a channel flow are conducted to examine how the frequency and wavenumber of the travelling wave influence the drag reduction at friction Reynolds numbers Reτ=951Re_\tau = 951 and 40004000. The actuation parameter space is restricted to the inner-scaled actuation (ISA) pathway, where drag reduction is achieved through direct attenuation of the near-wall scales. The level of turbulence attenuation, hence drag reduction, is found to change with the near-wall Stokes layer protrusion height 0.01\ell_{0.01}. A range of frequencies is identified where the Stokes layer attenuates turbulence, lifting up the cycle of turbulence generation and thickening the viscous sublayer; in this range, the drag reduction increases as 0.01\ell_{0.01} increases up to 3030 viscous units. Outside this range, the strong Stokes shear strain enhances near-wall turbulence generation leading to a drop in drag reduction with increasing 0.01\ell_{0.01}. We further find that, within our parameter and Reynolds number space, the ISA pathway has a power cost that always exceeds any drag reduction savings. This motivates the study of the outer-scaled actuation (OSA) pathway in Part 2, where drag reduction is achieved through actuating the outer-scaled motions

    Logarithmic scaling of higher-order temperature moments in the atmospheric surface layer

    Full text link
    A generalized logarithmic law for high-order moments of passive scalars is proposed for turbulent boundary layers. This law is analogous to the generalized log law that has been proposed for high-order moments of the turbulent longitudinal velocity and is derived by combining the random sweeping decorrelation hypothesis with a spectral model informed by the attached eddy hypothesis. The proposed theory predicts that the high-order moments of passive scalar fluctuations within the inertial sublayer will vary logarithmically with wall-normal distance (zz). The proposed theory is evaluated using high frequency time-series measurements of temperature and streamwise velocity fluctuations obtained in the first meter of the atmospheric surface layer (ASL) under near-neutral thermal stratification. The logarithmic dependence with zz within the inertial sublayer is observed in both the air temperature and velocity moments, with good agreement to the predictions from the proposed theory. Surprisingly, the proposed theory appears to be as, if not more, valid for transported passive scalars than for the longitudinal velocity

    Turbulent drag reduction by spanwise wall forcing. Part 2: High-Reynolds-number experiments

    Get PDF
    Here, we present measurements of turbulent drag reduction at high friction Reynolds numbers in the range of 4500Reτ150004500 \le Re_\tau \le 15000. The efficacy of the approach, using streamwise travelling waves of spanwise wall oscillations, is studied for two actuation regimes: (i) inner-scaled actuation (ISA), as investigated in Part 1 of this study, which targets the relatively high-frequency structures of the near-wall cycle, and (ii) outer-scaled actuation (OSA), which was recently presented by Marusic et al. (Nat. Commun., vol. 12, 2021) for high-ReτRe_\tau flows, targeting the lower-frequency, outer-scale motions. Multiple experimental techniques were used, including a floating-element balance to directly measure the skin-friction drag force, hot-wire anemometry to acquire long-time fluctuating velocity and wall-shear stress, and stereoscopic-PIV (particle image velocimetry) to measure the turbulence statistics of all three velocity components across the boundary layer. Under the ISA pathway, drag reduction of up to 25% was achieved, but mostly with net power saving losses due to the high-input power cost associated with the high-frequency actuation. The low-frequency OSA pathway, however, with its lower input power requirements, was found to consistently result in positive net power savings of 5 - 10%, for moderate drag reductions of 5 - 15%. The results suggest that OSA is an attractive pathway for energy-efficient drag reduction in high Reynolds number applications. Both ISA and OSA strategies are found to produce complex inter-scale interactions, leading to attenuation of the turbulent fluctuations across the boundary layer for a broad range of length and time scales

    Decoupling of Lattice and Orbital Degrees of Freedom in an Iron-Pnictide Superconductor

    Full text link
    The interplay of structural and electronic phases in iron-based superconductors is a central theme in the search for the superconducting pairing mechanism. While electronic nematicity, defined as the breaking of four-fold symmetry triggered by electronic degrees of freedom, is competing with superconductivity, the effect of purely structural orthorhombic order is unexplored. Here, using x-ray diffraction (XRD), we reveal a new structural orthorhombic phase with an exceptionally high onset temperature (Tort250T_\mathrm{ort} \sim 250 K), which coexists with superconductivity (Tc=25T_\mathrm{c} = 25 K), in an electron-doped iron-pnictide superconductor far from the underdoped region. Furthermore, our angle-resolved photoemission spectroscopy (ARPES) measurements demonstrate the absence of electronic nematic order as the driving mechanism, in contrast to other underdoped iron pnictides where nematicity is commonly found. Our results establish a new, high temperature phase in the phase diagram of iron-pnictide superconductors and impose strong constraints for the modeling of their superconducting pairing mechanism.Comment: SI available upon reques

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Genome-wide characterization of circulating metabolic biomarkers

    Get PDF
    Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1,2,3,4,5,6,7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8,9,10,11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases

    Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci.

    Get PDF
    We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development
    corecore