66 research outputs found

    Charged extracellular residues, conserved throughout a G-protein-coupled receptor family, are required for ligand binding, receptor activation, and cell-surface expression

    Get PDF
    For G-protein-coupled receptors (GPCRs) in general, the roles of extracellular residues are not well defined compared with residues in transmembrane helices (TMs). Nevertheless, extracellular residues are important for various functions in both peptide-GPCRs and amine-GPCRs. In this study, the V1a vasopressin receptor was used to systematically investigate the role of extracellular charged residues that are highly conserved throughout a subfamily of peptide-GPCRs, using a combination of mutagenesis and molecular modeling. Of the 13 conserved charged residues identified in the extracellular loops (ECLs), Arg116 (ECL1), Arg125 (top of TMIII), and Asp204 (ECL2) are important for agonist binding and/or receptor activation. Molecular modeling revealed that Arg125 (and Lys 125) stabilizes TMIII by interacting with lipid head groups. Charge reversal (Asp125) caused re-ordering of the lipids, altered helical packing, and increased solvent penetration of the TM bundle. Interestingly, a negative charge is excluded at this locus in peptide-GPCRs, whereas a positive charge is excluded in amine-GPCRs. This contrasting conserved charge may reflect differences in GPCR binding modes between peptides and amines, with amines needing to access a binding site crevice within the receptor TM bundle, whereas the binding site of peptide-GPCRs includes more extracellular domains. A conserved negative charge at residue 204 (ECL2), juxtaposed to the highly conserved disulfide bond, was essential for agonist binding and signaling. Asp204 (and Glu204) establishes TMIII contacts required for maintaining the α-hairpin fold of ECL2, which if broken (Ala204 or Arg204) resulted in ECL2 unfolding and receptor dysfunction. This study provides mechanistic insight into the roles of conserved extracellular residues

    Data publication with the structural biology data grid supports live analysis

    Get PDF
    Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data. sbgrid. org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis

    Social disparities in exposures to bisphenol A and polyfluoroalkyl chemicals: a cross-sectional study within NHANES 2003-2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bisphenol A (BPA) and polyfluoroalkyl chemicals (PFCs) are suspected endocrine disrupting compounds known to be ubiquitous in people's bodies. Population disparities in exposure to these chemicals have not been fully characterized.</p> <p>Methods</p> <p>We analyzed data from the 2003-2006 National Health and Nutrition Examination Survey. Using multivariable linear regression we examined the association between urinary concentrations of BPA, serum concentrations of four PFCs, and multiple measures of socioeconomic position (SEP): family income, education, occupation, and food security. We also examined associations with race/ethnicity.</p> <p>Results</p> <p>All four PFCs were positively associated with family income, whereas BPA was inversely associated with family income. BPA concentrations were higher in people who reported very low food security and received emergency food assistance than in those who did not. This association was particularly strong in children: 6-11 year-olds whose families received emergency food had BPA levels 54% higher (95% CI, 13 to 112%) than children of families who did not. For BPA and PFCs we saw smaller and less consistent associations with education and occupation. Mexican Americans had the lowest concentrations of any racial/ethnic group of both types of chemicals; for PFCs, Mexican Americans not born in the U.S. had much lower levels than those born in the U.S.</p> <p>Conclusions</p> <p>People with lower incomes had higher body burdens of BPA; the reverse was true for PFCs. Family income with adjustment for family size was the strongest predictor of chemical concentrations among the different measures of SEP we studied. Income, education, occupation, and food security appear to capture different aspects of SEP that may be related to exposure to BPA and PFCs and are not necessarily interchangeable as measures of SEP in environmental epidemiology studies. Differences by race/ethnicity were independent of SEP.</p

    Why patient recorded outcomes should be mandatory in and outside clinical trials to guide management of patients with metastatic breast cancer

    Get PDF
    Although metastatic breast cancer (MBC) may be responsive to further treatment, it is incurable, and so improving the quality of life (QoL), not merely the length of life, is an important parameter of benefit. Patients need appropriate formal psychosocial assessment to enable identification of those who may require different forms of support in order to minimize the social and emotional impact of the diagnosis and effects of treatment. Between 31% and 57% of women with MBC will have a mood disorder that merits intervention, but oncologists are not very skilled at recognizing psychological distress and then referring patients for specialist help. This means that patients' psychological needs may go unrecognized, underestimated and under-treated. Some countries may well have resource constraints that limit access to specialist supportive care provided by breast care nurses, trained counsellors, clinical psychologists, liaison psychiatrists and others, but a clear evidence base exists from at least five meta-analyses that demonstrates the efficacy of psychosocial interventions in adult cancer patients. In MBC specifically, the benefits of interventions such as group support and cognitive behaviour therapy have been demonstrated. The UK and Australia have both produced national guidelines and guidance about the provision of supportive services

    Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers' serum

    No full text
    We aimed to characterize levels of polyfluorinated compounds (PFCs) in indoor dust from offices, homes, and vehicles; to investigate factors that may affect PFC levels in dust; and to examine the associations between PFCs in dust and office workers’ serum. Dust samples were collected in 2009 from offices, homes, and vehicles of 31 individuals in Boston, MA and analyzed for nineteen PFCs, including perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), fluorotelomer alcohols (FTOHs), and sulfonamidoethanols (FOSEs). Serum was collected from each participant and analyzed for eight PFCs including PFOA and PFOS. Perfluorononanoate, PFOA, perfluoroheptanoate, perfluorohexanoate, PFOS and 8:2 FTOH had detection frequencies >50% in dust from all three microenvironments. The highest geometric mean concentration in office dust was for 8:2 FTOH (309 ng/g), while PFOS was highest in homes (26.9 ng/g) and vehicles (15.8 ng/g). Overall, offices had the highest PFC concentrations, particularly for longer-chain carboxylic acids and FTOHs. Perfluorobutyrate was prevalent in homes and vehicles, but not offices. PFOA serum concentrations were not associated with PFC dust levels after adjusting for PFC concentrations in office air. Dust concentrations of most PFCs are higher in offices than in homes and vehicles. However, indoor dust may not be a significant source of exposure to PFCs for office workers. This finding suggests that our previously published observation of an association between FTOH concentrations in office air and PFOA concentrations in office workers was not due to confounding by PFCs in dust
    corecore