130 research outputs found
The impact of climate sensitive factors on the exposure to organohalogenated contaminants in an aquatic bird exploiting both marine and freshwater habitats
To assess how climate-sensitive factors may affect the exposure to organochlorines (OCs) and perfluoroalkyl substances (PFASs), we monitored concentrations in eggs of the common goldeneye (Bucephala clangula) over two decades (1999â2019) in central Norway. The goldeneye alternates between marine and freshwater habitats and is sensitive to climate variation, especially due to alterations in ice conditions which may affect feeding conditions. We assessed how biological factors such as diet (stable isotopes ÎŽ13C and ÎŽ15N), the onset of egg laying, and physical characteristics such as winter climate (North Atlantic Oscillation: NAOw) influenced exposure. We predicted compounds to show different temporal trends depending on whether they were still in production (i.e. some PFASs) or have been banned (i.e. legacy OCs and some PFASs). Therefore, we controlled for potential temporal trends in all analyses. There were declining trends for α- and Îł-hexachlorocyclohexane (HCH), oxychlordane, cis-chlordane, cis-nonachlor, p,pâČ-dichlorodiphenyltrichloroethane (p.pâČ-DDT) and less persistent polychlorinated biphenyl (PCB) congeners (e.g. PCB101). In contrast, the dominant compounds, such as p,pâČ-dichlorodiphenyldichloroethylene (p,pâČ-DDE) and persistent PCB congeners, were stable, whereas hexachlorobenzene (HCB) increased over time. Most OCs were positively related to ÎŽ15N, suggesting higher exposure in birds feeding at upper trophic levels. Chlordanes and HCB were positively associated with ÎŽ13C, indicating traces of marine input for these compounds, whereas the relationships to most PCBs were negative. Among PFASs, perfluorooctanesulfonamide (PFOSA) and perfluorohexane sulfonic acid (PFHxS) declined. Most PFASs were positively associated with ÎŽ13C, whereas there were no associations with ÎŽ15N. Egg laying date was positively associated to perfluoroheptanesulfonic acid (PFHpS), perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), suggesting that some of the PFAS load originated from the wintering locations. Although NAOw had little impact on the exposure to organohalogenated contaminants, factors sensitive to climate change, especially diet, were associated with the exposure to OHCs in goldeneyes
The nuclear receptor transcriptional coregulator RIP140
The nuclear receptor superfamily comprises ligand-regulated transcription factors that control various developmental and physiological pathways. These receptors share a common modular structure and regulate gene expression through the recruitment of a large set of coregulatory proteins. These transcription cofactors regulate, either positively or negatively, chromatin structure and transcription initiation. One of the first proteins to be identified as a hormone-recruited cofactor was RIP140. Despite its recruitment by agonist-liganded receptors, RIP140 exhibits a strong transcriptional repressive activity which involves several inhibitory domains and different effectors. Interestingly, the RIP140 gene, located on chromosome 21 in humans, is finely regulated at the transcriptional level by various nuclear receptors. In addition, the protein undergoes several post-translational modifications which control its repressive activity. Finally, experiments performed in mice devoid of the RIP140 gene indicate that this transcriptional cofactor is essential for female fertility and energy homeostasis. RIP140 therefore appears to be an important modulator of nuclear receptor activity which could play major roles in physiological processes and hormone-dependent diseases
Plutonium in the environment: key factors related to impact assessment in case of an accidental atmospheric release
International audienceThis paper deals with plutonium and key factors related to impact assessment. It is based on recent work performed by CEA which summarize the main features of plutonium behaviour from sources inside installations to the environment and man, and to report current knowledge on the different parameters used in models for environmental and radiological impact assessment. These key factors are illustrated through a case study based on an accidental atmospheric release of Pu in a nuclear facility
Mechanisms for a nutrient-conserving carbon pump in a seasonally stratified, temperate continental shelf sea
Continental shelf seas may have a significant role in oceanic uptake and storage of carbon dioxide (CO2) from the atmosphere, through a âcontinental shelf pumpâ mechanism. The northwest European continental shelf, in particular the Celtic Sea (50°N 8°W), was the target of extensive biogeochemical sampling from March 2014 to September 2015, as part of the UK Shelf Sea Biogeochemistry research programme (UK-SSB). Here, we use the UK-SSB carbonate chemistry and macronutrient measurements to investigate the biogeochemical seasonality in this temperate, seasonally stratified system. Following the onset of stratification, near-surface biological primary production during spring and summer removed dissolved inorganic carbon and nutrients, and a fraction of the sinking particulate organic matter was subsequently remineralised beneath the thermocline. Water column inventories of these variables throughout 1.5 seasonal cycles, corrected for air-sea CO2 exchange and sedimentary denitrification and anammox, isolated the combined effect of net community production (NCP) and remineralisation on the inorganic macronutrient inventories. Overall inorganic inventory changes suggested that a significant fraction (>50%) of the annual NCP of around 3 mol-C mâ2 yrâ1 appeared to be stored within a long-lived organic matter (OM) pool with a lifetime of several months or more. Moreover, transfers into and out of this pool appeared not to be in steady state over the one full seasonal cycle sampled. Accumulation of such a long-lived and potentially C-rich OM pool is suggested to be at least partially responsible for the estimated net air-to-sea CO2 flux of âŒ1.3 mol-C mâ2 yrâ1 at our study site, while providing a mechanism through which a nutrient-conserving continental shelf pump for CO2 could potentially operate in this and other similar regions
A framework for remission in SLE: consensus findings from a large international task force on definitions of remission in SLE (DORIS)
Objectives Treat-to-target recommendations have identified 'remission' as a target in systemic lupus erythematosus (SLE), but recognise that there is no universally accepted definition for this. Therefore, we initiated a process to achieve consensus on potential definitions for remission in SLE. Methods An international task force of 60 specialists and patient representatives participated in preparatory exercises, a face-to-face meeting and follow-up electronic voting. The level for agreement was set at 90%. Results The task force agreed on eight key statements regarding remission in SLE and three principles to guide the further development of remission definitions: 1. Definitions of remission will be worded as follows: remission in SLE is a durable state characterised by . (reference to symptoms, signs, routine labs). 2. For defining remission, a validated index must be used, for example, clinical systemic lupus erythematosus disease activity index (SLEDAI)=0, British Isles lupus assessment group (BILAG) 2004 D/E only, clinical European consensus lupus outcome measure (ECLAM)=0; with routine laboratory assessments included, and supplemented with physician's global assessment. 3. Distinction is made between remission off and on therapy: remission off therapy requires the patient to be on no other treatment for SLE than maintenance antimalarials; and remission on therapy allows patients to be on stable maintenance antimalarials, low-dose corticosteroids (prednisone â€5â
mg/day), maintenance immunosuppressives and/or maintenance biologics. The task force also agreed that the most appropriate outcomes (dependent variables) for testing the prognostic value (construct validity) of potential remission definitions are: death, damage, flares and measures of health-related quality of life. Conclusions The work of this international task force provides a framework for testing different definitions of remission against long-term outcomes
VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System
The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently ('specialised') or non-covalently ('cargo' effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a 'core' T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the machinery with differential effector specificity and efficiency of target cell delivery
Recommended from our members
Climate Divisions for Alaska Based on Objective Methods
Alaska encompasses several climate types because of its vast size, high-latitude location, proximity to oceans, and complex topography. There is a great need to understand how climate varies regionally for climatic research and forecasting applications. Although climate-type zones have been established for Alaska on the basis of seasonal climatological mean behavior, there has been little attempt to construct climate divisions that identify regions with consistently homogeneous climatic variability. In this study, cluster analysis was applied to monthly-average temperature data from 1977 to 2010 at a robust set of weather stations to develop climate divisions for the state. Mean-adjusted Advanced Very High Resolution Radiometer surface temperature estimates were employed to fill in missing temperature data when possible. Thirteen climate divisions were identified on the basis of the cluster analysis and were subsequently refined using local expert knowledge. Divisional boundary lines were drawn that encompass the grouped stations by following major surrounding topographic boundaries. Correlation analysis between station and gridded downscaled temperature and precipitation data supported the division placement and boundaries. The new divisions north of the Alaska Range were the North Slope, West Coast, Central Interior, Northeast Interior, and Northwest Interior. Divisions south of the Alaska Range were Cook Inlet, Bristol Bay, Aleutians, Northeast Gulf, Northwest Gulf, North Panhandle, Central Panhandle, and South Panhandle. Correlations with various Pacific Ocean and Arctic climatic teleconnection indices showed numerous significant relationships between seasonal division average temperature and the Arctic Oscillation, PacificâNorth American pattern, North Pacific index, and Pacific decadal oscillation.Keywords: Statistical techniques, Climate variability, Climate classification/regimes, Regional effects, Climatolog
Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean
Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality-controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near-surface maximum rate of 1.80â±â0.45â”molâkgâ1âyrâ1. Anthropogenic CO2 accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (ÎŽ13CDIC) was also determined and used as an independent test of our method. We calculated a volume-integrated anthropogenic CO2 accumulation rate of 2.8â±â0.4âmgâCâmâ3âyrâ1 along the EEL, which is about double the global mean. The anthropogenic CO2 component accounts for only 31â±â6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas
- âŠ