70 research outputs found

    The abundances of hydrocarbon functional groups in the interstellar medium inferred from laboratory spectra of hydrogenated and methylated polycyclic aromatic hydrocarbons

    Full text link
    Infrared (IR) absorption spectra of individual polycyclic aromatic hydrocarbons (PAHs) containing methyl (-CH3), methylene (>CH2), or diamond-like *CH groups and IR spectra of mixtures of methylated and hydrogenated PAHs prepared by gas phase condensation were measured at room temperature (as grains in pellets) and at low temperature (isolated in Ne matrices). In addition, the PAH blends were subjected to an in-depth molecular structure analysis by means of high-performance liquid chromatography, nuclear magnetic resonance spectroscopy, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Supported by calculations at the density functional theory level, the laboratory results were applied to analyze in detail the aliphatic absorption complex of the diffuse interstellar medium at 3.4 mu-m and to determine the abundances of hydrocarbon functional groups. Assuming that the PAHs are mainly locked in grains, aliphatic CHx groups (x = 1,2,3) would contribute approximately in equal quantities to the 3.4 mu-m feature (N_{CHx} / N_{H} approx 10^{-5} - 2 * 10^{-5}). The abundances, however, may be two to four times lower if a major contribution to the 3.4 mu-m feature comes from molecules in the gas phase. Aromatic =CH groups seem to be almost absent from some lines of sight, but can be nearly as abundant as each of the aliphatic components in other directions (N_{=CH} / N_{H} < 2 * 10^{-5}; upper value for grains). Due to comparatively low binding energies, astronomical IR emission sources do not display such heavy excess hydrogenation. At best, especially in proto-planetary nebulae, >CH2 groups bound to aromatic molecules, i.e., excess hydrogens on the molecular periphery only, can survive the presence of a nearby star.Comment: 34 pages, 19 figures, ApJS, 208, 2

    Is general relativity `essentially understood' ?

    Full text link
    The content of Einstein's theory of gravitation is encoded in the properties of the solutions to his field equations. There has been obtained a wealth of information about these solutions in the ninety years the theory has been around. It led to the prediction and the observation of physical phenomena which confirm the important role of general relativity in physics. The understanding of the domain of highly dynamical, strong field configurations is, however, still quite limited. The gravitational wave experiments are likely to provide soon observational data on phenomena which are not accessible by other means. Further theoretical progress will require, however, new methods for the analysis and the numerical calculation of the solutions to Einstein's field equations on large scales and under general assumptions. We discuss some of the problems involved, describe the status of the field and recent results, and point out some open problems.Comment: Extended version of a talk which was to be delivered at the DPG Fruehjahrstagung in Berlin, 5 March 200

    On "many black hole" space-times

    Full text link
    We analyze the horizon structure of families of space times obtained by evolving initial data sets containing apparent horizons with several connected components. We show that under certain smallness conditions the outermost apparent horizons will also have several connected components. We further show that, again under a smallness condition, the maximal globally hyperbolic development of the many black hole initial data constructed by Chrusciel and Delay, or of hyperboloidal data of Isenberg, Mazzeo and Pollack, will have an event horizon, the intersection of which with the initial data hypersurface is not connected. This justifies the "many black hole" character of those space-times.Comment: several graphic file

    Towards the classification of static vacuum spacetimes with negative cosmological constant

    Get PDF
    We present a systematic study of static solutions of the vacuum Einstein equations with negative cosmological constant which asymptotically approach the generalized Kottler (``Schwarzschild--anti-de Sitter'') solution, within (mainly) a conformal framework. We show connectedness of conformal infinity for appropriately regular such space-times. We give an explicit expression for the Hamiltonian mass of the (not necessarily static) metrics within the class considered; in the static case we show that they have a finite and well defined Hawking mass. We prove inequalities relating the mass and the horizon area of the (static) metrics considered to those of appropriate reference generalized Kottler metrics. Those inequalities yield an inequality which is opposite to the conjectured generalized Penrose inequality. They can thus be used to prove a uniqueness theorem for the generalized Kottler black holes if the generalized Penrose inequality can be established.Comment: the discussion of our results includes now some solutions of Horowitz and Myers; typos corrected here and there; a shortened version of this version will appear in Journal of Mathematical Physic

    Helium nanodroplet isolation ro-vibrational spectroscopy: methods and recent results

    Get PDF
    In this article, recent developments in HElium NanoDroplet Isolation (HENDI) spectroscopy are reviewed, with an emphasis on the infrared region of the spectrum. Topics discussed include experimental details, comparison of radiation sources, symmetry issues of the helium solvation structure, sources of line broadening, changes in spectroscopic constants upon solvation, and applications including formation of novel chemical structures.Comment: 24 pages, 8 figures, 3 tables; to be published in the Journal of Chemical Physic

    Getting the whole picture: High content screening using three-dimensional cellular model systems and whole animal assays

    Get PDF
    Phenotypic or High Content Screening (HCS) is becoming more widely used for primary screening campaigns in drug discovery. Currently the vast majority of HCS campaigns are using cell lines grown in well-established monolayer cultures (2D tissue culture). There is widespread recognition that the more biologically relevant 3D tissue culture technologies such as spheroids and organoids and even whole animal assays will eventually be run as primary HCS. Upgrading the IT infrastructure to cope with the increase in data volumes requires investments in hardware (and software) and this will be manageable. However, the main bottleneck for the effective adoption and use of 3D tissue culture and whole animal assays in HCS is anticipated to be the development of software for the analysis of 3D images. In this review we summarize the current state of the available software and how they may be applied to analyzing 3D images obtained from a HCS campaign
    corecore