75 research outputs found

    Novel molecularly imprinted impedimetric biosensor based on polypyrrole and decorated graphene oxide for the routine monitoring of Lysozyme

    Get PDF
    In this work, a novel molecularly imprinted polymer based on polypyrrole (PPy) and decorated graphene oxide (GO@Fe3O4) was developed for the sensitive detection of lysozyme (LYS). The synthesized material (MIPPy/GO@Fe3O4) was electrodeposited with LYS as a template on gold microelectrodes. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were used to confirm the adequate preparation of GO@Fe3O4, and the characterization of the resulting microsensors was carried out with the following analytical techniques: electrochemical impedance spectrometry (EIS), FT-IR analysis and scanning electron microscopy (SEM). An equivalent circuit was suggested to quantitatively analyse each component of the sensor system. EIS was also used for the determination of LYS in a wide linear range from 1 to 1 105 pg/mL, presenting good precision (RSD ≈ 10%, n = 5) and low limits of detection and quantification (LOD = 0.009 pg/mL and LOQ = 0.9 pg/mL, respectively). Meanwhile, the microsensor showed a high sensitivity, a good selectivity and reproducibility. The construction process was relatively simple, and provided a rapid and economical method for the routine monitoring of LYS. The microsensor was successfully applied for the detection of this protein in fresh chicken-egg white sample and commercial drug.Campus de Excelencia Internacional Andalucía Tech. Beca FPU18/05371 Proyecto de la Junta de Andalucía UMA18FEDERJA06

    443 CELLULAR AND BIOMECHANICAL SEGMENTAL CHARACTERIZATION OF HUMAN MENISCUS

    Get PDF

    The shallow marine ostracod communities of the Azores (Mid- North Atlantic): taphonomy and palaeoecology

    Get PDF
    This is the first palaeoecological and taphonomical study of the Recent marine ostracods from the Azores. The aims of this work were to address the following questions: i) to establish the typical ostracod assemblages from the shallow waters of the Azores; ii) to determine the bathymetric ranges for each ostracod species; iii) to investigate the time span and depth in which significant transport occurs; iv) to quantify the amount of out of habitat transport between sandy beaches, tide pools and the sublittoral; v) to determine distinctive taphonomic features that can be used to recognize the amount of temporal resolution in ostracod assemblages. Fifteen species were recovered, representing 8 families and 12 genera (Loxoconcha, Neonesidea, Xestoleberis, Aurila, Urocythereis, Heterocythereis, Carinocythereis, Callistocythere, Leptocythere, Semicytherura, Lanceostoma and Cylindroleberis). The living assemblages are dominated by specimens of the Loxoconchidae, Xestoleberidae and Hemicytheridae, whereas the dead assemblages are dominated by specimens of the Loxoconchidae, Hemicytheridae, Bairdiidae, Xestoleberidae and Trachyleberidae. The shift from life-dominated assemblages in the shallower depths to death-dominated assemblages at greater depths is a consequence of significant transport downwards. The abundance of ostracods is higher in the first 10-20 m depth, especially in fine to medium sandy substrates. Considerable differences among islands were supported by the Bayesian model, as a consequence of the physical and hydrodynamic factors that differently affect each of the Azorean islands. Large-scale (sea-surface currents, Holocene relative sea-level, storms) and small-scale processes are responsible for shaping the Azorean Recent marine ostracod communities. No living specimens were found in the samples collected at the beach faces, thus reinforcing former interpretations of one of the authors (S. Ávila) that advocate that at a global scale, sandy beaches in oceanic islands located at temperate latitudes are almost or even completely devoid of life due to historical reasons related with the sea level changes

    Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

    Get PDF
    Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{6×10196\times 10^{19}eV}. The anisotropy was measured by the fraction of arrival directions that are less than 3.13.1^\circ from the position of an active galactic nucleus within 75 Mpc (using the V\'eron-Cetty and V\'eron 12th12^{\rm th} catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (386+7)(38^{+7}_{-6})%, compared with 2121% expected for isotropic cosmic rays. This is down from the early estimate of (6913+11)(69^{+11}_{-13})%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201

    Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory

    Get PDF
    The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs "radio-hybrid" measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluoresence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.Comment: accepted for publication in NIM A, 13 pages, minor corrections to author list and references in v

    Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

    Get PDF
    We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5×10172.5\times 10^{17} eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L.C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.Comment: 28 pages, 11 figure

    Quantum gravity phenomenology at the dawn of the multi-messenger era—A review

    Get PDF
    The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio

    The Psychological Science Accelerator's COVID-19 rapid-response dataset

    Get PDF

    The psychological science accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    Depth Of Maximum Of Air-shower Profiles At The Pierre Auger Observatory. I. Measurements At Energies Above 1017.8ev

    Get PDF
    901
    corecore