547 research outputs found

    AdS/QCD Phenomenological Models from a Back-Reacted Geometry

    Get PDF
    We construct a fully back-reacted holographic dual of a four-dimensional field theory which exhibits chiral symmetry breaking. Two possible models are considered by studying the effects of a five-dimensional field, dual to the qqˉq\bar{q} operator. One model has smooth geometry at all radii and the other dynamically generates a cutoff at finite radius. Both of these models satisfy Einstein's field equations. The second model has only three free parameters, as in QCD, and we show that this gives phenomenologically consistent results. We also discuss the possibility that in order to obtain linear confinement from a back-reacted model it may be necessary to consider the condensate of a dimension two operator.Comment: 13 pages, 4 figures, Replaced with minor correction

    Using Ultra Long Period Cepheids to Extend the Cosmic Distance Ladder to 100 Mpc and Beyond

    Get PDF
    We examine the properties of 17 long period (80-180 days) and very luminous (median absolute magnitude of M_I= -7.93 and M_V= -7.03) Cepheids to see if they can serve as an useful distance indicator. We find that these Ultra Long Period (ULP) Cepheids have a relatively shallow Period-Luminosity (PL) relation, so in fact they are more "standard candle"-like than classical Cepheids. In the reddening-free Wesenheit index, the slope of the ULP PL relation is ~10 times less steep than the standard PL relation for the SMC Cepheids. The scatter of our sample about the W_I PL relation is 0.22 mag, approaching that of classical Cepheids and Type Ia Supernovae. We expect this scatter to decrease as bigger and more uniform samples of ULP Cepheids are obtained. We also measure a non-zero period derivative for one ULP Cepheid (SMC HV829) and use the result to probe evolutionary models and mass loss of massive stars. ULP Cepheids main advantage over classical Cepheids is that they are more luminous, and as such show great potential as stellar distance indicators to galaxies up to 100 Mpc and beyond.Comment: Accepted for Publication in ApJ. 11 pages, 8 figure

    Prospects for Characterizing the Haziest Sub-Neptune Exoplanets with High Resolution Spectroscopy

    Get PDF
    Observations to characterize planets larger than Earth but smaller than Neptune have led to largely inconclusive interpretations at low spectral resolution due to hazes or clouds that obscure molecular features in their spectra. However, here we show that high-resolution spectroscopy (R \sim 25,000 to 100,000) enables one to probe the regions in these atmospheres above the clouds where the cores of the strongest spectral lines are formed. We present models of transmission spectra for a suite of GJ1214b-like planets with thick photochemical hazes covering 1 - 5 μ\mum at a range of resolutions relevant to current and future ground-based spectrographs. Furthermore, we compare the utility of the cross-correlation function that is typically used with a more formal likelihood-based approach, finding that only the likelihood based method is sensitive to the presence of haze opacity. We calculate the signal-to-noise of these spectra, including telluric contamination, required to robustly detect a host of molecules such as CO, CO2_{2}, H2_{2}O, and CH4_{4}, and photochemical products like HCN, as a function of wavelength range and spectral resolution. Spectra in M band require the lowest S/Nres_{res} to detect multiple molecules simultaneously. CH4_{4} is only observable for the coolest models (Teff=T_{\rm{eff}} = 412 K) and only in the L band. We quantitatively assess how these requirements compare to what is achievable with current and future instruments, demonstrating that characterization of small cool worlds with ground-based high resolution spectroscopy is well within reach.Comment: Submitted to AAS Journals, revised to reflect referee comments. Posting of this manuscript on the arXiv was coordinated with S. Ghandi et a

    Canonical Coordinates and Meson Spectra for Scalar Deformed N=4 SYM from the AdS/CFT Correspondence

    Full text link
    Five supersymmetric scalar deformations of the AdS_5xS^5 geometry are investigated. By switching on condensates for the scalars in the N=4 multiplet with a form which preserves a subgroup of the original R-symmetry, disk and sphere configurations of D3-branes are formed in the dual supergravity background. The analytic, canonical metric for each geometry is formulated and the singularity structure is studied. Quarks are introduced into two of the corresponding field theories using D7-brane probes and the pseudoscalar meson spectrum is calculated. For one of the condensate configurations, a mass gap is found and shown analytically to be present in the massless limit. It is also found that there is a stepped spectrum with eigenstate degeneracy in the limit of small quark masses. In the case of a second, similar deformation, it is necessary to understand the full D3-D7 brane interaction to study the limit of small quark masses. It is seen that simple solutions to the equations of motion for the other three geometries are unlikely to exist.Comment: 16 pages, 7 figures, references added, typos correcte

    Community health workers and accountability: reflections from an international “think-in”

    Get PDF
    Community health workers (CHWs) are frequently put forward as a remedy for lack of health system capacity, including challenges associated with health service coverage and with low community engagement in the health system, and expected to enhance or embody health system accountability. During a ‘think in’, held in June of 2017, a diverse group of practitioners and researchers discussed the topic of CHWs and their possible roles in a larger “accountability ecosystem.” This jointly authored commentary resulted from our deliberations. While CHWs are often conceptualized as cogs in a mechanistic health delivery system, at the end of the day, CHWs are people embedded in families, communities, and the health system. CHWs’ social position and professional role influence how they are treated and trusted by the health sector and by community members, as well as when, where, and how they can exercise agency and promote accountability. To that end, we put forward several propositions for further conceptual development and research related to the question of CHWs and accountability

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap

    Exoplanet albedo spectra and colors as a function of planet phase, separation, and metallicity

    Get PDF
    First generation optical coronagraphic telescopes will obtain images of cool gas and ice giant exoplanets around nearby stars. The albedo spectra of exoplanets at planet-star separations larger than about 1 AU are dominated by reflected light to beyond 1 {\mu}m and are punctuated by molecular absorption features. We consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {\mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, and Neptune analogs with 10x and 30x. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are cloud-free at 0.8 AU, have H2O clouds at 2 AU, and have both NH3 and H2O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution spectra as a function of phase. The presence and structure of clouds strongly influence the spectra. Since the planet images will be unresolved, their phase may not be obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase. We consider the range of these combined effects on spectra and colors. For example, we find that the spectral influence of clouds depends more on planet-star separation and hence temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H2O absorption features near 0.94 {\mu}m. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator to pole temperature gradients than are found on Jupiter and thus may have differing atmospheric dynamics.Comment: 62 pages, 19 figures, 6 tables Accepted for publication in Ap

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. (2016) presented a spectrum of WISE 0855 from 4.5–5.1 µm (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4–4.14 µm. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes

    A Spitzer Transmission Spectrum for the Exoplanet GJ 436b, Evidence for Stellar Variability, and Constraints on Dayside Flux Variations

    Get PDF
    In this paper we describe a uniform analysis of eight transits and eleven secondary eclipses of the extrasolar planet GJ 436b obtained in the 3.6, 4.5, and 8.0 micron bands using the IRAC instrument on the Spitzer Space Telescope between UT 2007 June 29 and UT 2009 Feb 4. We find that the best-fit transit depths for visits in the same bandpass can vary by as much as 8% of the total (4.7 sigma significance) from one epoch to the next. Although we cannot entirely rule out residual detector effects or a time-varying, high-altitude cloud layer in the planet's atmosphere as the cause of these variations, we consider the occultation of active regions on the star in a subset of the transit observations to be the most likely explanation. We reconcile the presence of magnetically active regions with the lack of significant visible or infrared flux variations from the star by proposing that the star's spin axis is tilted with respect to our line of sight, and that the planet's orbit is therefore likely to be misaligned. These observations serve to illustrate the challenges associated with transmission spectroscopy of planets orbiting late-type stars; we expect that other systems, such as GJ 1214, may display comparably variable transit depths. Our measured 8 micron secondary eclipse depths are consistent with a constant value, and we place a 1 sigma upper limit of 17% on changes in the planet's dayside flux in this band. Averaging over the eleven visits gives us an improved estimate of 0.0452% +/- 0.0027% for the secondary eclipse depth. We combine timing information from our observations with previously published data to produce a refined orbital ephemeris, and determine that the best-fit transit and eclipse times are consistent with a constant orbital period. [ABRIDGED]Comment: 26 pages, 18 figures, 7 tables in emulateapj format. Accepted for publication in Ap

    A Discrete Time Model for the Analysis of Medium-Throughput C. elegans Growth Data

    Get PDF
    BACKGROUND: As part of a program to predict the toxicity of environmental agents on human health using alternative methods, several in vivo high- and medium-throughput assays are being developed that use C. elegans as a model organism. C. elegans-based toxicological assays utilize the COPAS Biosort flow sorting system that can rapidly measure size, extinction (EXT) and time-of-flight (TOF), of individual nematodes. The use of this technology requires the development of mathematical and statistical tools to properly analyze the large volumes of biological data. METHODOLOGY/PRINCIPAL FINDINGS: Findings A Markov model was developed that predicts the growth of populations of C. elegans. The model was developed using observations from a 60 h growth study in which five cohorts of 300 nematodes each were aspirated and measured every 12 h. Frequency distributions of log(EXT) measurements that were made when loading C. elegans L1 larvae into 96 well plates (t = 0 h) were used by the model to predict the frequency distributions of the same set of nematodes when measured at 12 h intervals. The model prediction coincided well with the biological observations confirming the validity of the model. The model was also applied to log(TOF) measurements following an adaptation. The adaptation accounted for variability in TOF measurements associated with potential curling or shortening of the nematodes as they passed through the flow cell of the Biosort. By providing accurate estimates of frequencies of EXT or TOF measurements following varying growth periods, the model was able to estimate growth rates. Best model fits showed that C. elegans did not grow at a constant exponential rate. Growth was best described with three different rates. Microscopic observations indicated that the points where the growth rates changed corresponded to specific developmental events: the L1/L2 molt and the start of oogenesis in young adult C. elegans. CONCLUSIONS: Quantitative analysis of COPAS Biosort measurements of C. elegans growth has been hampered by the lack of a mathematical model. In addition, extraneous matter and the inability to assign specific measurements to specific nematodes made it difficult to estimate growth rates. The present model addresses these problems through a population-based Markov model
    corecore