53 research outputs found

    Efficacy of alpha1-antitrypsin augmentation therapy in conditions other than pulmonary emphysema

    Get PDF
    Up to now alpha 1-antitrypsin (AAT) augmentation therapy has been approved only for commercial use in selected adults with severe AAT deficiency-related pulmonary emphysema (i.e. PI*ZZ genotypes as well as combinations of Z, rare and null alleles expressing AAT serum concentrations <11 Îźmol/L). However, the compassionate use of augmentation therapy in recent years has proven outstanding efficacy in small cohorts of patients suffering from uncommon AAT deficiency-related diseases other than pulmonary emphysema, such as fibromyalgia, systemic vasculitis, relapsing panniculitis and bronchial asthma. Moreover, a series of preclinical studies provide evidence of the efficacy of AAT augmentation therapy in several infectious diseases, diabetes mellitus and organ transplant rejection. These facts have generated an expanding number of medical applications and patents with claims for other indications of AAT besides pulmonary emphysema. The aim of the present study is to compile and analyze both clinical and histological features of the aforementioned published case studies and reports where AAT augmentation therapy was used for conditions other than pulmonary emphysema. Particularly, our research refers to ten case reports and two clinical trials on AAT augmentation therapy in patients with both AAT deficiency and, at least, one of the following diseases: fibromyalgia, vasculitis, panniculitis and bronchial asthma. In all the cases, AAT was successfully applied whereas previous maximal conventional therapies had failed. In conclusion, laboratory studies in animals and humans as well as larger clinical trials should be, thus, performed in order to determine both the strong clinical efficacy and security of AAT in the treatment of conditions other than pulmonary emphysema

    A Rapid Evidence Appraisal of influenza vaccination in health workers: an important policy in an area of imperfect evidence

    Get PDF
    IntroductionThe World Health Organization recommends vaccination of health workers (HWs) against influenza, but low uptake is intransigent.We conducted a Rapid Evidence Appraisal on: the risk of influenza in HWs, transmission risk from HWs to patients, the benefit of HW vaccination, and strategies for improving uptake. We aimed to capture a ‘whole-of-system’ perspective to consider possible benefits for HWs, employers and patients.MethodsWe executed a comprehensive search of the available literature published from 2006 to 2018 in the English language. We developed search terms for seven separate questions following the PICO framework (population, intervention, comparators, outcomes) and queried nine databases.ResultsOf 3784 publications identified, 52 met inclusion criteria. Seven addressed HW influenza risk, of which four found increased risk; 15 addressed influenza vaccine benefit to HWs or their employers, of which 10 found benefit; 11 addressed influenza transmission from HWs to patients, of which 6 found evidence for transmission; 12 unique studies addressed whether vaccinating HWs produced patient benefit, of which 9 concluded benefits accrued. Regarding the number of HWs needed to vaccinate (NNV) to deliver patient benefit, NNV estimates ranged from 3 to 36,000 but were in significant disagreement. Fourteen studies provided insights on strategies to improve uptake; the strongest evidence was for mandatory vaccination.ConclusionsThe evidence on most questions related to influenza vaccination in HWs is mixed and often of low-quality. Substantial heterogeneity exists in terms of study designs and settings, making comparison between studies difficult. Notwithstanding these limitations, a majority of studies suggests that influenza vaccination benefit HWs and their employers; and HWs are implicated in transmission events. The effects of vaccinating HWs on patient morbidity and mortality may include reductions in all-cause mortality and influenza-like illness (ILI). Taken together, the evidence suggests that HW vaccination is an important policy for HWs themselves, their employers, and their patients

    Smad phosphoisoform signaling specificity: the right place at the right time

    Get PDF
    Transforming growth factor (TGF)-β antagonizes mitogenic Ras signaling during epithelial regeneration, but TGF-β and Ras act synergistically in driving tumor progression. Insights into these apparently contradictory effects have come from recent detailed analyses of the TGF-β signaling process. Here, we summarize the different modes of TGF-β/Ras signaling in normal epithelium and neoplasms and show how perturbation of TGF-β signaling by Ras may contribute to a shift from tumor-suppressive to protumorigenic TGF-β activity during tumor progression. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β Type I receptor and Ras-associated kinases differentially phosphorylate Smad2 and Smad3 to create C-terminally (C), linker (L) or dually (L/C) phosphorylated (p) isoforms. In epithelial homeostasis, TGF-β-mediated pSmad3C signaling opposes proliferative responses induced by mitogenic signals. During carcinogenesis, activation of cytoplasmic Ras-associated kinases including mitogen-activated protein kinase confers a selective advantage on benign tumors by shifting Smad3 signaling from a tumor-suppressive pSmad3C to an oncogenic pSmad3L pathway, leading to carcinoma in situ. Finally, at the edges of advanced carcinomas invading adjacent tissues, nuclear Ras-associated kinases such as cyclin-dependent kinases, together with cytoplasmic kinases, alter TGF-β signals to more invasive and proliferative pSmad2L/C and pSmad3L/C signaling. Taken together, TGF-β signaling specificity arises from spatiotemporal dynamics of Smad phosphoisoforms. Based on these findings, we have reason to hope that pharmacologic inhibition of linker phosphorylation might suppress progression to human advanced carcinomas by switching from protumorigenic to tumor-suppressive TGF-β signaling
    • …
    corecore