16 research outputs found
Hair Cortisol in Twins : Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes
A. Palotie on työryhmän jäsen.Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.Peer reviewe
MMP-2 knockdown blunts age-dependent carotid stiffness by decreasing elastin degradation and augmenting eNOS activation
AIMS
Arterial stiffness is a hallmark of vascular aging that precedes and strongly predicts the development of cardiovascular diseases. Age-dependent stiffening of large elastic arteries is primarily attributed to increased levels of matrix metalloproteinase-2 (MMP-2). However, the mechanistic link between age-dependent arterial stiffness and MMP-2 remains unclear. Thus, we aimed to investigate the efficacy of MMP-2 knockdown using small interfering RNA (siRNA) on age-dependent arterial stiffness.
METHODS AND RESULTS
Pulse wave velocity (PWV) was assessed in right carotid artery of wild type (WT) mice from different age groups. MMP-2 levels in the carotid artery and plasma of young (3 months) and old (20-25 months) WT mice were determined. Carotid PWV as well as vascular and circulating MMP-2 were elevated with increasing age in mice. Old WT mice (18-21-month-old) were treated for 4 weeks with either MMP-2 or scrambled (Scr) siRNA via tail vein injection. Carotid PWV was assessed at baseline, 2 and 4 weeks after start of the treatment. MMP-2 knockdown reduced vascular MMP-2 levels and attenuated age-dependent carotid stiffness. siMMP-2 treated mice showed increased elastin to collagen ratio, lower plasma desmosine (DES), enhanced phosphorylation of endothelial nitric oxide synthase (eNOS) and higher levels of vascular cyclic guanosine monophosphate (cGMP). An age-dependent increase in direct protein-protein interaction between MMP-2 and eNOS was also observed. Lastly, DES, an elastin breakdown product, was measured in a patient cohort (n = 64, 23-86 years old), where carotid-femoral PWV was also assessed; here, plasma levels of DES directly correlated with age and arterial stiffness.
CONCLUSION
MMP-2 knockdown attenuates age-dependent carotid stiffness by blunting elastin degradation and augmenting eNOS bioavailability. Given the increasing clinical use of siRNA technology, MMP2 knockdown should be investigated further as a possible strategy to mitigate age-dependent arterial stiffness and related CV diseases.
TRANSLATIONAL PERSPECTIVE
Arterial stiffness is a hallmark of vascular aging that precedes and strongly predicts the development of cardiovascular diseases. This study provides translational evidence to support a key role for MMP-2 on the development of age-associated arterial stiffness. Silencing of MMP-2 using siRNA technology shows an effect on aged mice where it attenuates age-dependent carotid stiffness by reducing elastin degradation and increasing eNOS bioavailability. Additionally, in humans we show that elastin breakdown increases with age and increased PWV. These findings indicate MMP-2 knockdown as a promising novel strategy to attenuate age-dependent arterial stiffness and cardiovascular diseases
Heritability of hair cortisol and genetic overlap with psychological variables
Background: Measuring cortisol in hair is a promising method to assess alterations of the biological stress-response which is altered in psychiatric disorders. While first studies indicate a contribution of genetic factors to inter-individual variance in hair cortisol concentration (HCC), it is unknown whether genes influencing HCC also account for inter-individual differences in psychological variables. The existence of such a true biological link would point at a causal involvement of the HPA axis in the vulnerability for psychiatric disorders
No associations between single nucleotide polymorphisms in corticoid receptor genes and heart rate and cortisol responses to a standardized social stress test in adolescents: the TRAILS Study
Previously, sequence variation in the glucocorticoid (GR) and mineralocorticoid (MR) receptor genes (NR3C1 and NR3C2, respectively) have been found to be associated with physiological stress responses to social stress tests in small samples of adult men and oral contraceptives (OC) using women. Associations between single nucleotide polymorphisms (SNPs) in the GR (23EK-rs6190, 9beta-rs6198, BclI-rs4142324) and the MR gene (I180V-rs5522 and -2G/C (rs2070951) with cortisol and heart rate responses to a performance-related social stress task (public speaking and mental arithmetic) were examined in a large sample (n = 553) of adolescents (15-17 years). To make comparisons with previous findings, associations were tested in boys (n = 277), free-cycling (FC) girls (n = 183) and OC users (n = 93). None of the previously reported associations in adults could be replicated in this large adolescent sample. Explanations for non-replication are discussed