28 research outputs found

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    Background The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Results Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. Conclusion We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.Peer reviewe

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

    Get PDF
    BackgroundThe Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function.ResultsHere, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory.ConclusionWe conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.</p

    Validity of machine learning in biology and medicine increased through collaborations across fields of expertise

    Full text link
    Machine learning (ML) has become an essential asset for the life sciences and medicine. We selected 250 articles describing ML applications from 17 journals sampling 26 different fields between 2011 and 2016. Independent evaluation by two readers highlighted three results. First, only half of the articles shared software, 64% shared data and 81% applied any kind of evaluation. Although crucial for ensuring the validity of ML applications, these aspects were met more by publications in lower-ranked journals. Second, the authors’ scientific backgrounds highly influenced how technical aspects were addressed: reproducibility and computational evaluation methods were more prominent with computational co-authors; experimental proofs more with experimentalists. Third, 73% of the ML applications resulted from interdisciplinary collaborations comprising authors from at least two of the three disciplines: computational sciences, biology, and medicine. The results suggested collaborations between computational and experimental scientists to generate more scientifically sound and impactful work integrating knowledge from both domains. Although scientifically more valid solutions and collaborations involving diverse expertise did not correlate with impact factors, such collaborations provide opportunities to both sides: computational scientists are given access to novel and challenging real-world biological data, increasing the scientific impact of their research, and experimentalists benefit from more in-depth computational analyses improving the technical correctness of work
    corecore