93 research outputs found

    High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing

    Get PDF
    BACKGROUND: Currently available reference methods for the molecular epidemiology of the Mycobacterium tuberculosis complex either lack sensitivity or are still too tedious and slow for routine application. Recently, tandem repeat typing has emerged as a potential alternative. This report contributes to the development of tandem repeat typing for M. tuberculosis by summarising the existing data, developing additional markers, and setting up a freely accessible, fast, and easy to use, internet-based service for strain identification. RESULTS: A collection of 21 VNTRs incorporating 13 previously described loci and 8 newly evaluated markers was used to genotype 90 strains from the M. tuberculosis complex (M. tuberculosis (64 strains), M. bovis (9 strains including 4 BCG representatives), M. africanum (17 strains)). Eighty-four different genotypes are defined. Clustering analysis shows that the M. africanum strains fall into three main groups, one of which is closer to the M. tuberculosis strains, and an other one is closer to the M. bovis strains. The resulting data has been made freely accessible over the internet to allow direct strain identification queries. CONCLUSIONS: Tandem-repeat typing is a PCR-based assay which may prove to be a powerful complement to the existing epidemiological tools for the M. tuberculosis complex. The number of markers to type depends on the identification precision which is required, so that identification can be achieved quickly at low cost in terms of consumables, technical expertise and equipment

    Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in <it>Oikopleura dioica </it>genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo).</p> <p>Results</p> <p><it>Oikopleura </it>genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways.</p> <p>Conclusions</p> <p><it>Oikopleura </it>has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.</p

    GENCODE: producing a reference annotation for ENCODE

    Get PDF
    BACKGROUND: The GENCODE consortium was formed to identify and map all protein-coding genes within the ENCODE regions. This was achieved by a combination of initial manual annotation by the HAVANA team, experimental validation by the GENCODE consortium and a refinement of the annotation based on these experimental results. RESULTS: The GENCODE gene features are divided into eight different categories of which only the first two (known and novel coding sequence) are confidently predicted to be protein-coding genes. 5' rapid amplification of cDNA ends (RACE) and RT-PCR were used to experimentally verify the initial annotation. Of the 420 coding loci tested, 229 RACE products have been sequenced. They supported 5' extensions of 30 loci and new splice variants in 50 loci. In addition, 46 loci without evidence for a coding sequence were validated, consisting of 31 novel and 15 putative transcripts. We assessed the comprehensiveness of the GENCODE annotation by attempting to validate all the predicted exon boundaries outside the GENCODE annotation. Out of 1,215 tested in a subset of the ENCODE regions, 14 novel exon pairs were validated, only two of them in intergenic regions. CONCLUSION: In total, 487 loci, of which 434 are coding, have been annotated as part of the GENCODE reference set available from the UCSC browser. Comparison of GENCODE annotation with RefSeq and ENSEMBL show only 40% of GENCODE exons are contained within the two sets, which is a reflection of the high number of alternative splice forms with unique exons annotated. Over 50% of coding loci have been experimentally verified by 5' RACE for EGASP and the GENCODE collaboration is continuing to refine its annotation of 1% human genome with the aid of experimental validation

    Tempo and drivers of plant diversification in the European mountain system

    Get PDF
    There is still limited consensus on the evolutionary history of species-rich temperate alpine floras due to a lack of comparable and high-quality phylogenetic data covering multiple plant lineages. Here we reconstructed when and how European alpine plant lineages diversified, i.e., the tempo and drivers of speciation events. We performed full-plastome phylogenomics and used multi-clade comparative models applied to six representative angiosperm lineages that have diversified in European mountains (212 sampled species, 251 ingroup species total). Diversification rates remained surprisingly steady for most clades, even during the Pleistocene, with speciation events being mostly driven by geographic divergence and bedrock shifts. Interestingly, we inferred asymmetrical historical migration rates from siliceous to calcareous bedrocks, and from higher to lower elevations, likely due to repeated shrinkage and expansion of high elevation habitats during the Pleistocene. This may have buffered climate-related extinctions, but prevented speciation along elevation gradients as often documented for tropical alpine floras

    The treasure vault can be opened: large-scale genome skimming works well using herbarium and silica gel dried material

    Get PDF
    Genome skimming has the potential for generating large data sets for DNA barcoding and wider biodiversity genomic studies, particularly via the assembly and annotation of full chloroplast (cpDNA) and nuclear ribosomal DNA (nrDNA) sequences. We compare the success of genome skims of 2051 herbarium specimens from Norway/Polar regions with 4604 freshly collected, silica gel dried specimens mainly from the European Alps and the Carpathians. Overall, we were able to assemble the full chloroplast genome for 67% of the samples and the full nrDNA cluster for 86%. Average insert length, cover and full cpDNA and rDNA assembly were considerably higher for silica gel dried than herbarium-preserved material. However, complete plastid genomes were still assembled for 54% of herbarium samples compared to 70% of silica dried samples. Moreover, there was comparable recovery of coding genes from both tissue sources (121 for silica gel dried and 118 for herbarium material) and only minor differences in assembly success of standard barcodes between silica dried (89% ITS2, 96% matK and rbcL) and herbarium material (87% ITS2, 98% matK and rbcL). The success rate was > 90% for all three markers in 1034 of 1036 genera in 160 families, and only Boraginaceae worked poorly, with 7 genera failing. Our study shows that large-scale genome skims are feasible and work well across most of the land plant families and genera we tested, independently of material type. It is therefore an efficient method for increasing the availability of plant biodiversity genomic data to support a multitude of downstream applications

    Postglacial species arrival and diversity buildup of northern ecosystems took millennia

    Get PDF
    What drives ecosystem buildup, diversity, and stability? We assess species arrival and ecosystem changes across 16 millennia by combining regional-scale plant sedimentary ancient DNA from Fennoscandia with near-complete DNA and trait databases. We show that postglacial arrival time varies within and between plant growth forms. Further, arrival times were mainly predicted by adaptation to temperature, disturbance, and light. Major break points in ecological trait diversity were seen between 13.9 and 10.8 calibrated thousand years before the present (cal ka BP), as well as break point in functional diversity at 12.0 cal ka BP, shifting from a state of ecosystem buildup to a state where most habitat types and biotic ecosystem components were in place. Trait and functional diversity stabilized around 8 cal ka BP, after which both remained stable, although changes in climate took place and species inflow continued. Our ecosystem reconstruction indicates a millennial-scale time phase of formation to reach stable and resilient levels of diversity and functioning.publishedVersio
    corecore