67 research outputs found

    Circadian clock-coordinated hepatic lipid metabolism: only transcriptional regulation?

    Get PDF
    By regulating the metabolism of fatty acids, carbohydrates, and xenobiotic, the mammalian circadian clock plays a fundamental role on the liver physiology. At present, it is supposed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level. However, recent evidences suggest that some signaling pathways synchronized by the circadian clock can also influence metabolism at a post-transcriptional level. In this context, we have recently shown that the circadian clock synchronizes the rhythmic activation of the IRE1α pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock, provokes deregulation of endoplasmic reticulum-localized enzymes, and leads to impaired lipid metabolism. We will describe here the additional pathways synchronized by the clock and discussed the influence of the circadian clock-controlled feeding rhythm on them

    The mammalian circadian timing system: from gene expression to physiology

    Get PDF
    Many physiological processes in organisms from bacteria to man are rhythmic, and some of these are controlled by self-sustained oscillators that persist in the absence of external time cues. Circadian clocks are perhaps the best characterized biological oscillators and they exist in virtually all light-sensitive organisms. In mammals, they influence nearly all aspects of physiology and behavior, including sleep-wake cycles, cardiovascular activity, endocrinology, body temperature, renal activity, physiology of the gastro-intestinal tract, and hepatic metabolism. The master pacemaker is located in the suprachiasmatic nuclei, two small groups of neurons in the ventral part of the hypothalamus. However, most peripheral body cells contain self-sustained circadian oscillators with a molecular makeup similar to that of SCN (suprachiasmatic nucleus) neurons. This organization implies that the SCN must synchronize countless subsidiary oscillators in peripheral tissues, in order to coordinate cyclic physiology. In this review, we will discuss some recent studies on the structure and putative functions of the mammalian circadian timing system, but we will also point out some apparent inconsistencies in the currently publicized model for rhythm generatio

    Main Recent Contributions to SHS from France

    No full text
    International audienceBoth in situ TRXRD and IR thermography, on the one hand, and different levels of modeling, on the other, have generated a strong progress in the knowledge and control of numerous SHS reactions. The SHS of simple binary materials, such as intermetallics (FeAl, MoSi2, NbAl3, etc.), oxides (e.g. ZrO2), carbides (e.g. SiC) or nitrides, more complex materials, such as mullite, SiAlONs, MAX phases, composites (SiO2-Al2O3, NiAl-ZrO2 ), powders in their more complicated states, such as well controlled microstructures, fully densified intermetallics, smart composites, and hard coatings carried out by GFA researchers greatly contributed to the worldwide competition to harness the potential of SHS. On the occasion of the 40th anniversary of SHS, this paper is giving an overview of the main results obtained by GFA over the last ten years

    Transcriptional regulatory logic of the diurnal cycle in the mouse liver.

    Get PDF
    Many organisms exhibit temporal rhythms in gene expression that propel diurnal cycles in physiology. In the liver of mammals, these rhythms are controlled by transcription-translation feedback loops of the core circadian clock and by feeding-fasting cycles. To better understand the regulatory interplay between the circadian clock and feeding rhythms, we mapped DNase I hypersensitive sites (DHSs) in the mouse liver during a diurnal cycle. The intensity of DNase I cleavages cycled at a substantial fraction of all DHSs, suggesting that DHSs harbor regulatory elements that control rhythmic transcription. Using chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq), we found that hypersensitivity cycled in phase with RNA polymerase II (Pol II) loading and H3K27ac histone marks. We then combined the DHSs with temporal Pol II profiles in wild-type (WT) and Bmal1-/- livers to computationally identify transcription factors through which the core clock and feeding-fasting cycles control diurnal rhythms in transcription. While a similar number of mRNAs accumulated rhythmically in Bmal1-/- compared to WT livers, the amplitudes in Bmal1-/- were generally lower. The residual rhythms in Bmal1-/- reflected transcriptional regulators mediating feeding-fasting responses as well as responses to rhythmic systemic signals. Finally, the analysis of DNase I cuts at nucleotide resolution showed dynamically changing footprints consistent with dynamic binding of CLOCK:BMAL1 complexes. Structural modeling suggested that these footprints are driven by a transient heterotetramer binding configuration at peak activity. Together, our temporal DNase I mappings allowed us to decipher the global regulation of diurnal transcription rhythms in the mouse liver

    Circadian Regulation of Cochlear Sensitivity to Noise by Circulating Glucocorticoids

    Get PDF
    The cochlea possesses a robust circadian clock machinery that regulates auditory function. How the cochlear clock is influenced by the circadian system remains unknown. Here, we show that cochlear rhythms are system driven and require local Bmal1 as well as central input from the suprachiasmatic nuclei (SCN). SCN ablations disrupted the circadian expression of the core clock genes in the cochlea. Because the circadian secretion of glucocorticoids (GCs) is controlled by the SCN and GCs are known to modulate auditory function, we assessed their influence on circadian gene expression. Removal of circulating GCs by adrenalectomy (ADX) did not have a major impact on core clock gene expression in the cochlea. Rather it abolished the transcription of clock-controlled genes involved in inflammation. ADX abolished the known differential auditory sensitivity to day and night noise trauma and prevented the induction of GABA-ergic and glutamate receptors mRNA transcripts. However, these improvements were unrelated to changes at the synaptic level, suggesting other cochlear functions may be involved. Due to this circadian regulation of noise sensitivity by GCs, we evaluated the actions of the synthetic glucocorticoid dexamethasone (DEX) at different times of the day. DEX was effective in protecting from acute noise trauma only when administered during daytime, when circulating glucocorticoids are low, indicating that chronopharmacological approaches are important for obtaining optimal treatment strategies for hearing loss. GCs appear as a major regulator of the differential sensitivity to day or night noise trauma, a mechanism likely involving the circadian control of inflammatory responses

    NRP/Optineurin Cooperates with TAX1BP1 to Potentiate the Activation of NF-κB by Human T-Lymphotropic Virus Type 1 Tax Protein

    Get PDF
    Nuclear factor (NF)-κB is a major survival pathway engaged by the Human T-Lymphotropic Virus type 1 (HTLV-1) Tax protein. Tax1 activation of NF-κB occurs predominantly in the cytoplasm, where Tax1 binds NF-κB Essential Modulator (NEMO/IKKγ) and triggers the activation of IκB kinases. Several independent studies have shown that Tax1-mediated NF-κB activation is dependent on Tax1 ubiquitination. Here, we identify by co-immunoprecipitation assays NEMO-Related Protein (NRP/Optineurin) as a binding partner for Tax1 in HTLV-1 infected and Tax1/NRP co-expressing cells. Immunofluorescence studies reveal that Tax1, NRP and NEMO colocalize in Golgi-associated structures. The interaction between Tax1 and NRP requires the ubiquitin-binding activity of NRP and the ubiquitination sites of Tax1. In addition, we observe that NRP increases the ubiquitination of Tax1 along with Tax1-dependent NF-κB signaling. Surprisingly, we find that in addition to Tax1, NRP interacts cooperatively with the Tax1 binding protein TAX1BP1, and that NRP and TAX1BP1 cooperate to modulate Tax1 ubiquitination and NF-κB activation. Our data strongly suggest for the first time that NRP is a critical adaptor that regulates the assembly of TAX1BP1 and post-translationally modified forms of Tax1, leading to sustained NF-κB activation

    Extensive Regulation of Diurnal Transcription and Metabolism by Glucocorticoids.

    Get PDF
    Altered daily patterns of hormone action are suspected to contribute to metabolic disease. It is poorly understood how the adrenal glucocorticoid hormones contribute to the coordination of daily global patterns of transcription and metabolism. Here, we examined diurnal metabolite and transcriptome patterns in a zebrafish glucocorticoid deficiency model by RNA-Seq, NMR spectroscopy and liquid chromatography-based methods. We observed dysregulation of metabolic pathways including glutaminolysis, the citrate and urea cycles and glyoxylate detoxification. Constant, non-rhythmic glucocorticoid treatment rescued many of these changes, with some notable exceptions among the amino acid related pathways. Surprisingly, the non-rhythmic glucocorticoid treatment rescued almost half of the entire dysregulated diurnal transcriptome patterns. A combination of E-box and glucocorticoid response elements is enriched in the rescued genes. This simple enhancer element combination is sufficient to drive rhythmic circadian reporter gene expression under non-rhythmic glucocorticoid exposure, revealing a permissive function for the hormones in glucocorticoid-dependent circadian transcription. Our work highlights metabolic pathways potentially contributing to morbidity in patients with glucocorticoid deficiency, even under glucocorticoid replacement therapy. Moreover, we provide mechanistic insight into the interaction between the circadian clock and glucocorticoids in the transcriptional regulation of metabolism

    Guidelines for Genome-Scale Analysis of Biological Rhythms

    Get PDF
    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them

    Guidelines for Genome-Scale Analysis of Biological Rhythms

    Get PDF
    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding ‘big data’ that is conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them

    Protéomique circadienne

    No full text
    Recent development in the proteomic technologies offers new perspectives in circadian biology and in particular the possibility to study post-translational modifications such as phosphorylation and acetylation. Applying in vivo proteomics on whole liver or on nuclear extracts, we were able to characterize the rhythmic liver proteome with unprecedented coverage. It allows the characterization of new rhythmic processes such as protein secretion, ribosome biogenesis, DNA repair, and polyploidy. In addition, the analysis of rhythmic post-translational modifications helps to understand the signal pathways involved and their consequences on hepatic metabolism
    corecore