52 research outputs found

    Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. sativa

    Get PDF
    Background: The first high quality draft of the grape genome sequence has just been published. This is a critical step in accessing all the genes of this species and increases the chances of exploiting the natural genetic diversity through association genetics. However, our basic knowledge of the extent of allelic variation within the species is still not sufficient. Towards this goal, we constructed nested genetic core collections (G-cores) to capture the simple sequence repeat (SSR) diversity of the grape cultivated compartment (Vitis vinifera L. subsp. sativa) from the world's largest germplasm collection (Domaine de Vassal, INRA Hérault, France), containing 2262 unique genotypes. Results: Sub-samples of 12, 24, 48 and 92 varieties of V. vinifera L. were selected based on their genotypes for 20 SSR markers using the M-strategy. They represent respectively 58%, 73%, 83% and 100% of total SSR diversity. The capture of allelic diversity was analyzed by sequencing three genes scattered throughout the genome on 233 individuals: 41 single nucleotide polymorphisms (SNPs) were identified using the G-92 core (one SNP for every 49 nucleotides) while only 25 were observed using a larger sample of 141 individuals selected on the basis of 50 morphological traits, thus demonstrating the reliability of the approach. Conclusion: The G-12 and G-24 core-collections displayed respectively 78% and 88% of the SNPs respectively, and are therefore of great interest for SNP discovery studies. Furthermore, the nested genetic core collections satisfactorily reflected the geographic and the genetic diversity of grape, which are also of great interest for the study of gene evolution in this species

    GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress

    Get PDF
    Mitochondrial ACONITASE3 is important for the acclimation to submergence stress by integrating carbon and nitrogen metabolism and impacting stress signaling pathways. Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.Peer reviewe

    Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny. Three categories of PA variables were assessed: total content, percentages of constitutive subunits and composite ratio variables. For nine functional candidate genes, among which eight co-located with QTLs, we performed association analyses using a diversity panel of 141 grapevine cultivars in order to identify causal SNPs.</p> <p>Results</p> <p>Multiple QTL analysis revealed a total of 103 and 43 QTLs, respectively for seed and skin PA variables. Loci were mainly of additive effect while some loci were primarily of dominant effect. Results also showed a large involvement of pairwise epistatic interactions in shaping PA composition. QTLs for PA variables in skin and seeds differed in number, position, involvement of epistatic interaction and allelic effect, thus revealing different genetic determinisms for grape PA composition in seeds and skin. Association results were consistent with QTL analyses in most cases: four out of nine tested candidate genes (<it>VvLAR1</it>, <it>VvMYBPA2</it>, <it>VvCHI1</it>, <it>VvMYBPA1</it>) showed at least one significant association with PA variables, especially <it>VvLAR1 </it>revealed as of great interest for further functional investigation. Some SNP-phenotype associations were observed only in the diversity panel.</p> <p>Conclusions</p> <p>This study presents the first QTL analysis on grape berry PA composition with a comparison between skin and seeds, together with an association study. Our results suggest a complex genetic control for PA traits and different genetic architectures for grape PA composition between berry skin and seeds. This work also uncovers novel genomic regions for further investigation in order to increase our knowledge of the genetic basis of PA composition.</p

    Morphological features of distribution of branches of the ethmoid arteries on from the shape of the orbit

    Get PDF
    To study the topography of the lattice of the arteries of the labyrinth and their relationship to the form of the orbit was carried out anthropometric measurements by the method of V. N. Shevkunenko, A. M. Eselevich, T. V. Zolotareva, G. N. Toporov. To determine the shape of the orbit was measured by the following parameters: 1 - the height of the entrance to the eye socket - the distance between the upper and lower walls of the orbit; 2 - entrance width - the distance between the inner and outer walls of the orbit; 3 - the depth - the distance between the inner boundary of the entrance into the orbit to the optic canal

    Repeated local emergence of carbapenem-resistant Acinetobacter baumannii in a single hospital ward.

    Get PDF
    We recently reported a dramatic increase in the prevalence of carbapenem-resistant Acinetobacter baumannii infections in the intensive care unit (ICU) of a Vietnamese hospital. This upsurge was associated with a specific oxa23-positive clone that was identified by multilocus VNTR analysis. Here, we used whole-genome sequence analysis to dissect the emergence of carbapenem-resistant A. baumannii causing ventilator-associated pneumonia (VAP) in the ICU during 2009-2012. To provide historical context and distinguish microevolution from strain introduction, we compared these genomes with those of A. baumannii asymptomatic carriage and VAP isolates from this same ICU collected during 2003-2007. We identified diverse lineages co-circulating over many years. Carbapenem resistance was associated with the presence of oxa23, oxa40, oxa58 and ndm1 genes in multiple lineages. The majority of resistant isolates were oxa23-positive global clone GC2; fine-scale phylogenomic analysis revealed five distinct GC2 sublineages within the ICU that had evolved locally via independent chromosomal insertions of oxa23 transposons. The increase in infections caused by carbapenem-resistant A. baumannii was associated with transposon-mediated transmission of a carbapenemase gene, rather than clonal expansion or spread of a carbapenemase-harbouring plasmid. Additionally, we found evidence of homologous recombination creating diversity within the local GC2 population, including several events resulting in replacement of the capsule locus. We identified likely donors of the imported capsule locus sequences amongst the A. baumannii isolated on the same ward, suggesting that diversification was largely facilitated via reassortment and sharing of genetic material within the localized A. baumannii population

    Assessing the invasive potential of different source populations of ragweed (Ambrosia artemisiifolia L.) through genomically informed species distribution modelling

    No full text
    Abstract The genetic composition of founding populations is likely to play a key role in determining invasion success. Individual genotypes may differ in habitat preference and environmental tolerance, so their ability to colonize novel environments can be highly variable. Despite the importance of genetic variation on invasion success, its influence on the potential distribution of invaders is rarely investigated. Here, we integrate population genomics and ecological niche models (ENMs) into a single framework to predict the distribution of globally invasive common ragweed (Ambrosia artemisiifolia) in Australia. We identified three genetic clusters for ragweed and used these to construct cluster‐specific ENMs and characterize within‐species niche differentiation. The potential range of ragweed in Australia depended on the genetic composition and continent of origin of the introduced population. Invaders originating from warmer, wetter climates had a broader potential distribution than those from cooler, drier ones. By quantifying this change, we identified source populations most likely to expand the ragweed distribution. As prevention remains the most effective method of invasive species management, our work provides a valuable way of ranking the threat posed by different populations to better inform management decisions

    Genomic Trajectories to Desiccation Resistance:Convergence and Divergence Among Replicate Selected <i>Drosophila </i>Lines

    No full text
    Adaptation to environmental stress is critical for long-term species persistence. With climate change and other anthropogenic stressors compounding natural selective pressures, understanding the nature of adaptation is as important as ever in evolutionary biology. In particular, the number of alternative molecular trajectories available for an organism to reach the same adaptive phenotype remains poorly understood. Here, we investigate this issue in a set of replicated Drosophila melanogaster lines selected for increased desiccation resistance—a classical physiological trait that has been closely linked to Drosophila species distributions. We used pooled whole-genome sequencing (Pool-Seq) to compare the genetic basis of their selection responses, using a matching set of replicated control lines for characterizing laboratory (lab-)adaptation, as well as the original base population. The ratio of effective population size to census size was high over the 21 generations of the experiment at 0.52–0.88 for all selected and control lines. While selected SNPs in replicates of the same treatment (desiccation-selection or lab-adaptation) tended to change frequency in the same direction, suggesting some commonality in the selection response, candidate SNP and gene lists often differed among replicates. Three of the five desiccation-selection replicates showed significant overlap at the gene and network level. All five replicates showed enrichment for ovary-expressed genes, suggesting maternal effects on the selected trait. Divergence between pairs of replicate lines for desiccation-candidate SNPs was greater than between pairs of control lines. This difference also far exceeded the divergence between pairs of replicate lines for neutral SNPs. Overall, while there was overlap in the direction of allele frequency changes and the network and functional categories affected by desiccation selection, replicates showed unique responses at all levels, likely reflecting hitchhiking effects, and highlighting the challenges in identifying candidate genes from these types of experiments when traits are likely to be polygenic

    Loss of Neogenin1 in human colorectal carcinoma cells causes a partial EMT and wound-healing response

    Get PDF
    Neogenin1 (NEO1) is a receptor of the Deleted in Colorectal Carcinoma (DCC)/Frazzled/UNC-40 family, which regulates axon guidance but can also stabilize epithelial adherens junctions. NEO1 and DCC are also tumor suppressors that can inhibit metastasis by acting as dependence receptors. Given the role of NEO1 in maintaining adherens junctions we tested whether loss of NEO1 also promoted metastasis via an epithelial mesenchymal transition (EMT). Loss of NEO1 disrupted zonula adherens but tight junctions were unaffected. Neo1-depleted epithelial cells exhibited a more migratory morphology, had reduced F-actin rich stress-fibres and more basal lamellipodia. Microtubule density was decreased while microtubule outgrowth was faster. Live imaging showed that Neo1-depleted epithelial islands had increased lateral movement. Western blots and immunostaining revealed increased expression of mesenchymal markers such as Fibronectin and MMP1. Furthermore, RNA-seq analysis showed a striking decrease in expression of genes associated with oxidative phosphorylation, and increased expression of genes associated with EMT, locomotion, and wound-healing. In summary, loss of NEO1 in intestinal epithelial cells produces a partial EMT response, based on gene expression, cellular morphology and behaviour and cytoskeletal distribution. These results suggest that loss of NEO1 in carcinomas may contribute to metastasis by promoting a partial EMT and increased motility
    corecore