41 research outputs found

    Innate immune pathways associated with lung radioprotection by soy isoflavones

    Get PDF
    Introduction: Radiation therapy for lung cancer causes pneumonitis and fibrosis. Soy isoflavones protect against radiation-induced lung injury, but the mediators of radio- protection remain unclear. We investigated the effect of radiation on myeloid-derived suppressor cells (MDSCs) in the lung and their modulation by soy isoflavones for a potential role in protection from radiation-induced lung injury. Methods: BALB/c mice (5–6 weeks old) received a single 10 Gy dose of thoracic irra- diation and soy isoflavones were orally administrated daily before and after radiation at 1 mg/day. Arginase-1 (Arg-1) and nuclear factor ÎșB (NF-ÎșB) p65 were detected in lung tissue by western blot analysis and immunohistochemistry. Lung MDSC subsets and their Arg-1 expression were analyzed by flow cytometry. Cytokine levels in the lungs were measured by ELISA. Results: At 1 week after radiation, CD11b+ cells expressing Arg-1 were decreased by radiation in lung tissue yet maintained in the lungs treated with radiation and soy isoflavones. Arg-1 was predominantly expressed by CD11b+Ly6ClowLy6G+ granulocytic MDSCs (gr-MDSCs). Arg-1 expression in gr-MDSCs was reduced by radiation and preserved by supplementation with soy isoflavones. A persistent increase in Arg-1+ cells was observed in lung tissue treated with combined radiation and soy isoflavones at early and late time points, compared to radiation alone. The increase in Arg-1 expression mediated by soy isoflavones could be associated with the inhibition of radiation-induced activation of NF-ÎșB and the control of pro-inflammatory cytokine production demon- strated in this study. Conclusion: A radioprotective mechanism of soy isoflavones may involve the promotion of Arg-1-expressing gr-MDSCs that could play a role in downregulation of inflammation and lung radioprotection

    Improved characterisation of MRSA transmission using within-host bacterial sequence diversity

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) transmission in the hospital setting has been a frequent subject of investigation using bacterial genomes, but previous approaches have not yet fully utilised the extra deductive power provided when multiple pathogen samples are acquired from each host. Here, we used a large dataset of MRSA sequences from multiply-sampled patients to reconstruct colonisation of individuals in a high-transmission setting in a hospital in Thailand. We reconstructed transmission trees for MRSA. We also investigated transmission between anatomical sites on the same individual, finding that this either occurs repeatedly or involves a wide transmission bottleneck. We examined the between-subject bottleneck, finding considerable variation in the amount of diversity transmitted. Finally, we compared our approach to the simpler method of identifying transmission pairs using single nucleotide polymorphism (SNP) counts. This suggested that the optimum threshold for identifying a pair is 39 SNPs, if sensitivities and specificities are equally weighted

    Discovery of Novel MicroRNAs in Female Reproductive Tract Using Next Generation Sequencing

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that mediate post-transcriptional gene silencing. Over 700 human miRNAs have currently been identified, many of which are mutated or de-regulated in diseases. Here we report the identification of novel miRNAs through deep sequencing the small RNAome (<30 nt) of over 100 tissues or cell lines derived from human female reproductive organs in both normal and disease states. These specimens include ovarian epithelium and ovarian cancer, endometrium and endometriomas, and uterine myometrium and uterine smooth muscle tumors. Sequence reads not aligning with known miRNAs were each mapped to the genome to extract flanking sequences. These extended sequence regions were folded in silico to identify RNA hairpins. Sequences demonstrating the ability to form a stem loop structure with low minimum free energy (<−25 kcal) and predicted Drosha and Dicer cut sites yielding a mature miRNA sequence matching the actual sequence were considered putative novel miRNAs. Additional confidence was achieved when putative novel hairpins assembled a collection of sequences highly similar to the putative mature miRNA but with heterogeneous 3â€Č-ends. A confirmed novel miRNA fulfilled these criteria and had its “star” sequence in our collection. We found 7 distinct confirmed novel miRNAs, and 51 additional novel miRNAs that represented highly confident predictions but without detectable star sequences. Our novel miRNAs were detectable in multiple samples, but expressed at low levels and not specific to any one tissue or cell type. To date, this study represents the largest set of samples analyzed together to identify novel miRNAs

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Radiation-Induced Esophagitis is Mitigated by Soy Isoflavones

    No full text
    Introduction: Lung cancer patients receiving radiotherapy present with acute esophagitis and chronic fibrosis, as a result of radiation injury to esophageal tissues. We have shown that soy isoflavones alleviate pneumonitis and fibrosis caused by radiation toxicity to normal lung. The effect of soy isoflavones on esophagitis histopathological changes induced by radiation was investigated. Methods: C57BL/6 mice were treated with 10 Gy or 25 Gy single thoracic irradiation and soy isoflavones for up to 16 weeks. Damage to esophageal tissues was assessed by H&E, Masson’s Trichrome and Ki-67 staining at 1, 4, 10, 16 weeks after radiation. The effects on smooth muscle cells and leukocyte infiltration were determined by immunohistochemistry using anti-αSMA and anti-CD45 respectively. Results: Radiation caused thickening of esophageal tissue layers that was significantly reduced by soy isoflavones. Major radiation alterations included hypertrophy of basal cells in mucosal epithelium and damage to smooth muscle cells in muscularis mucosae as well as disruption of collagen fibers in lamina propria connective tissue with leukocyte infiltration. These effects were observed as early as one week after radiation and were more pronounced with a higher dose of 25 Gy. Soy isoflavones limited the extent of tissue damage induced by radiation both at 10 and 25 Gy.Conclusions: Soy isoflavones have a radioprotective effect on the esophagus, mitigating the early and late effects of radiation injury in several esophagus tissue layers. Soy could be administered with radiotherapy to decrease the incidence and severity of esophagitis in lung cancer patients receiving thoracic radiation therapy

    Structure and Dynamics of RNA Repeat Expansions That Cause Huntington’s Disease and Myotonic Dystrophy Type 1

    No full text
    RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington’s disease and myotonic dystrophy type 1, which are caused by r­(CAG) and r­(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r­(CAG) [r­(3×CAG)] or r­(CUG) [r­(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r­(3×CAG) are stabilized by one-hydrogen bond (<i>cis</i> Watson–Crick/Watson–Crick) AA pairs, while those of r­(3×CUG) prefer one- or two-hydrogen bond (<i>cis</i> Watson–Crick/Watson–Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics
    corecore