45 research outputs found

    The impact of case characteristics on child welfare service investigations in Norway

    Get PDF
    This article explores the extent of activities in child welfare investigations. Several studies have reported that families can experience an investigation as both stressful and intrusive (Harris 2012; Tembo and Studsrød 2019). The extent of the investigation and its relation to reported concerns is important to better understand the investigation phase. The aim of this study was to examine which case characteristics lead to either an investigation with a high activity level or an investigation with a low activity level. Few previous studies have been identified, resulting in an explorative approach. Designed as a case file study, 1,123 investigations from 16 agencies in Norway were included. Multi-nominal regression by the generalized linear mixed model was employed to assess the relationships between case characteristics and the extent of the investigations, accounting for differences between agencies. For investigations with low activity, the main predictor was concerns regarding medical and educational neglect. Predictors for high activity included younger children, concerns of physical/sexual abuse, and concerns regarding the child’s social relations

    Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome

    Get PDF
    In Escherichia coli, the SeqA protein binds specifically to GATC sequences which are methylated on the A of the old strand but not on the new strand. Such hemimethylated DNA is produced by progression of the replication forks and lasts until Dam methyltransferase methylates the new strand. It is therefore believed that a region of hemimethylated DNA covered by SeqA follows the replication fork. We show that this is, indeed, the case by using global ChIP on Chip analysis of SeqA in cells synchronized regarding DNA replication. To assess hemimethylation, we developed the first genome-wide method for methylation analysis in bacteria. Since loss of the SeqA protein affects growth rate only during rapid growth when cells contain multiple replication forks, a comparison of rapid and slow growth was performed. In cells with six replication forks per chromosome, the two old forks were found to bind surprisingly little SeqA protein. Cell cycle analysis showed that loss of SeqA from the old forks did not occur at initiation of the new forks, but instead occurs at a time point coinciding with the end of SeqA-dependent origin sequestration. The finding suggests simultaneous origin de-sequestration and loss of SeqA from old replication forks

    Molecular Monitoring after Autologous Stem Cell Transplantation and Preemptive Rituximab Treatment of Molecular Relapse; Results from the Nordic Mantle Cell Lymphoma Studies (MCL2 and MCL3) with Median Follow-Up of 8.5 Years

    Get PDF
    The main objectives of the present study were to monitor minimal residual disease (MRD) in the bone marrow of patients with mantle cell lymphoma (MCL) to predict clinical relapse and guide preemptive treatment with rituximab. Among the patients enrolled in 2 prospective trials by the Nordic Lymphoma Group, 183 who had completed autologous stem cell transplantation (ASCT) and in whom an MRD marker had been obtained were included in our analysis. Fresh samples of bone marrow were analyzed for MRD by a combined standard nested and quantitative real-time PCR assay for Bcl-1/immunoglobulin heavy chain gene (IgH) and clonal IgH rear-rangements. Significantly shorter progression-free survival (PFS) and overall survival (OS) was demonstrated for patients who were MRD positive pre-ASCT (54 patients) or in the first analysis post-ASCT (23 patients). The median PFS was only 20 months in those who were MRD-positive in the first sample post-ASCT, compared with 142 months in the MRD-negative group (PPeer reviewe

    An Easy-To-Use Simulation Program Demonstrates Variations in Bacterial Cell Cycle Parameters Depending on Medium and Temperature

    Get PDF
    Many studies are performed on chromosome replication and segregation in Escherichia coli and other bacteria capable of complex replication with C phases spanning several generations. For such investigations an understanding of the replication patterns, including copy numbers of origins and replication forks, is crucial for correct interpretation of the results

    A Reduction in Ribonucleotide Reductase Activity Slows Down the Chromosome Replication Fork but Does Not Change Its Localization

    Get PDF
    BACKGROUND:It has been proposed that the enzymes of nucleotide biosynthesis may be compartmentalized or concentrated in a structure affecting the organization of newly replicated DNA. Here we have investigated the effect of changes in ribonucleotide reductase (RNR) activity on chromosome replication and organization of replication forks in Escherichia coli. METHODOLOGY/PRINCIPAL FINDINGS:Reduced concentrations of deoxyribonucleotides (dNTPs) obtained by reducing the activity of wild type RNR by treatment with hydroxyurea or by mutation, resulted in a lengthening of the replication period. The replication fork speed was found to be gradually reduced proportionately to moderate reductions in nucleotide availability. Cells with highly extended C periods showed a "delay" in cell division i.e. had a higher cell mass. Visualization of SeqA structures by immunofluorescence indicated no change in organization of the new DNA upon moderate limitation of RNR activity. Severe nucleotide limitation led to replication fork stalling and reversal. Well defined SeqA structures were not found in situations of extensive replication fork repair. In cells with stalled forks obtained by UV irradiation, considerable DNA compaction was observed, possibly indicating a reorganization of the DNA into a "repair structure" during the initial phase of the SOS response. CONCLUSION/SIGNIFICANCE:The results indicate that the replication fork is slowed down in a controlled manner during moderate nucleotide depletion and that a change in the activity of RNR does not lead to a change in the organization of newly replicated DNA. Control of cell division but not control of initiation was affected by the changes in replication elongation

    European aerosol phenomenology - 8 : Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets

    Get PDF
    Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.Peer reviewe

    Size and compositional dependent effects of marine aerosol on cloud condensation nuclei

    Get PDF
    This work investigates marine aerosol physico-chemical properties (e.g. size and chemistry) and its Cloud Condensation Nuclei (CCN) properties under natural background conditions. Black carbon (BC), a tracer for anthropogenic pollution, was used to classify Southern Ocean air mass cleanliness, where the study focussed on anthropogenic influences and was compared to the North East Atlantic, which is closer to pollution sources. Despite this, the lowest prevailing BC mass concentration levels were similar for either ocean (~0.1 ng m-3) with extreme pollution levels above 80 ng m-3 for about 0.3 % of the time over both observation periods. In order to elucidate the relative contribution of ‘primary’ wind-produced sea spray and ‘secondary’ gas-to-particle aerosols to marine cloud droplet formation, a novel detailed analysis of droplet activation critical supersaturation versus critical diameter was conducted in remote environmental marine air (i.e. maritime polar and modified continental Antarctic air masses) in parallel to modelled chemically-homogenous aerosols. The analysis revealed that, for realistic marine boundary layer cloud supersaturations, primary CCN contributed 8–51 % to the estimated cloud droplet concentration (as determined by the Hoppel intermodal-minimum) at wind speeds < 16 m s−1. At higher wind speeds, primary marine aerosol could contribute up to 100 % of estimated cloud droplet concentration. It was observed that within air masses enriched with sea spray CCN, the contribution of secondary (mainly non-sea-salt-sulphate) particles to cloud droplet concentration was significantly reduced despite a higher availability of sulphate CCN. Further analysis revealed a highly correlated inverse linear trend between activated sea spray particles and the percentage of activated sulphate particles. In practice, the addition of sea-salt CCN appeared to suppress the activation of sulphate CCN. An ensemble of three 1-D microphysical droplet growth and activation parcel models corroborated this suppression effect and found that under favourable conditions, as much as a ~100 % enhancement in cloud droplet concentration were predicted as the availability of sea-salt nuclei decreased and vertical updraft increased

    Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei

    No full text
    14 pages, 2 figures, 3 tables, supplementary information https://dx.doi.org/10.1038/s41598-018-32047-4.-- Author correction Scientific Reports 9: 10613 (2019), https://dx.doi.org/10.1038/s41598-019-46788-3Atmospheric aerosols in clean remote oceanic regions contribute significantly to the global albedo through the formation of haze and cloud layers; however, the relative importance of ‘primary’ wind-produced sea-spray over secondary (gas-to-particle conversion) sulphate in forming marine clouds remains unclear. Here we report on marine aerosols (PM) over the Southern Ocean around Antarctica, in terms of their physical, chemical, and cloud droplet activation properties. Two predominant pristine air masses and aerosol populations were encountered: modified continental Antarctic (cAA) comprising predominantly sulphate with minimal sea-salt contribution and maritime Polar (mP) comprising sulphate plus sea-salt. We estimate that in cAA air, 75% of the CCN are activated into cloud droplets while in mP air, 37% are activated into droplets, for corresponding peak supersaturation ranges of 0.37–0.45% and 0.19–0.31%, respectively. When realistic marine boundary layer cloud supersaturations are considered (e.g. ~0.2–0.3%), sea-salt CCN contributed 2–13% of the activated nuclei in the cAA air and 8–51% for the marine air for surface-level wind speed < 16 m s. At higher wind speeds, primary marine aerosol can even contribute up to 100% of the activated CCN, for corresponding peak supersaturations as high as 0.32%The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) project BACCHUS under grant agreement n_ 603445; Spanish Ministry of Economy and Competitiveness (MINECO) as part of the PEGASO (Ref.: CTM2012-37615) and BIO-NUC (Ref: CGL2013-49020-R) projects; HEA-PRTLI4 and SFI under MaREI. EPA Ireland is acknowledged for research support at Mace Head. M.B. received funding through the Italian RITMARE fellowship and is now funded by the postdoc fellowship of the Centre National d'Études Spatiales (CNES, Paris, France). A.Z. acknowledges support by the Natural Sciences and Engineering Research Council of Canada (NSERC), through grant RGPIN/04315-2014Peer Reviewe

    Sea-spray regulates sulfate cloud droplet activation over oceans

    Get PDF
    Sulfate aerosols are typically the dominant source of cloud condensation nuclei (CCN) over remote oceans and their abundance is thought to be the dominating factor in determining oceanic cloud brightness. Their activation into cloud droplets depends on dynamics (i.e. vertical updrafts) and competition with other potential CCN sources for the condensing water. We present new experimental results from the remote Southern Ocean illustrating that, for a given updraft, the peak supersaturation reached in cloud, and consequently the number of droplets activated on sulfate nuclei, is strongly but inversely proportional to the concentration of sea-salt activated despite a 10-fold lower abundance. Greater sea-spray nuclei availability mostly suppresses sulfate aerosol activation leading to an overall decrease in cloud droplet concentrations; however, for high vertical updrafts and low sulfate aerosol availability, increased sea-spray can augment cloud droplet concentrations. This newly identified effect where sea-salt nuclei indirectly controls sulfate nuclei activation into cloud droplets could potentially lead to changes in the albedo of marine boundary layer clouds by as much as 30%.The research leading to these results has received funding from SFI under MaREI; the European Union’s Seventh Framework Programme (FP7/2007–2013) project BACCHUS under grant agreement n_603445; Spanish Ministry of Economy and Competitiveness (MINECO) as part of the PEGASO (Ref.: CTM2012-37615) and BIONUC (Ref: CGL2013-49020-R) projects. The Antarctic cruise that led to this study was organised by R. Simo and M. Dall’Osto from the Institut de Ciéncies del Mar (CSIC), Barcelona, Catalonia, Spain.peer-reviewe
    corecore