11 research outputs found

    How to Sow and Reap as You Go: a Simple Model of Cyclical Endogenous Growth

    Get PDF
    In this paper, we present a simple endogenous growth model that allows for the occurrence of innovations that can develop into General Purpose Technologies (GPTs), which are the result of basic R&D. The model incorporates the main features of the Romer (1990) model and the Aghion and Howitt (1992) model by using multi-level Ethier functions on the one hand, and Poisson processes to describe the arrival of innovations produced by performing basic R&D and applied R&D. Through basic R&D the core of a potentially new GPT enters the economic system. This core offers the possibility for further expansion of the potential GPT through applied R&D by adding peripherals to this core. The characteristics of the new potential GPT that is represented by the core are randomly distributed. These characteristics include intrinsic profitability, scope for expansion, as well as R&D opportunities and efficiency of the corresponding applied R&D process. By using some illustrative simulations with the model, we show that the arrival of a successful GPT does indeed bring about a reallocation of R&D activities towards applied R&D, thus postponing the moment of arrival of the next GPT. Meanwhile, applied R&D raises the productivity of the GPT as a whole. But the profitability of finding the next/marginal peripheral falls in the process. This fall in marginal profits diminishes the incentives to engage in further applied R&D and increases the incentives to move into basic R&D activities again. Thus, we obtain a cyclical pattern in output growth that is not only partly driven by the arrival of the new potential GPTs but also by the continuing development of existing GPTs in the absence of the arrival of new ones. In periods that do not give rise to the arrival of new successful GPTs we find instances of alternating expansions of existing GPTs that have the character of a GPT-race.economic development an growth ;

    SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues.

    Get PDF
    There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection

    Influence of OSHV-1 oyster mortality episode on dissolved inorganic fluxes: An ex situ experiment at the individual scale

    No full text
    Ostreid herpesvirus 1 (OsHV-1 Όvar) infection has caused significant mortalities in juvenile oysters (Crassostrea gigas). In contrast to the practices of other animal production industries, sick and dead oysters are not separated from live ones and are left to decay in the surrounding environment, with unknown consequences on fluxes of dissolved materials. A laboratory approach was used in this study to test the influence of oyster mortality episode on dissolved inorganic fluxes at the oyster interface, dissociating (i) the effect of viral infection on metabolism of juvenile oysters and (ii) the effect of flesh decomposition on oxygen consumption and nutrient releases at the individual scale. Nine batches of juvenile oysters (Individual Total wet weight 1 g) were infected via injection of OsHV-1 enriched inoculums at different viral loads (108 and 109 OsHV-1 DNA copies per oyster) to explore infection thresholds. Oysters injected with filtered seawater were used as controls (C). Oysters were maintained under standard conditions to avoid stress linked to hypoxia, starvation, or ammonia excess. Before, after the injection and during the mortality episode, i.e. at days 1, 3, 7, 10 and 14, nine oysters per treatment were incubated in individual metabolic chambers to quantify oxygen, ammonium and phosphate fluxes at the seawater-oyster interface. Nine empty chambers served as a reference. Injections of the two viral loads of OsHV-1 induced similar mortality rates (38%), beginning at day 3 and lasting until day 14. The observed mortality kinetics were slower than those reported in previous experimental pathology studies, but comparable to those observed in the field (Thau lagoon, France). This study highlights that oxygen and nutrient fluxes significantly varied during mortality episode. Indeed (i) OsHV-1 infection firstly modifies oyster metabolism, with significant decreases in oxygen consumption and ammonium excretion, and (ii) dead oysters lead to a strong increase of ammonium (6 fold) and phosphate (41 fold) fluxes and a decrease in the N/P ratio due to mineralisation of their flesh. The latter may modify the structure of the planktonic community in the field during mortality episode. This study is a first step of the MORTAFLUX program. The second step was to in situ confirm this abnormal nutrient loading during a mortality episode and show its impact on bacterio-, phyto- and protozoo-plankton

    Marine ecological aquaculture: a successful Mediterranean integrated multi-trophic aquaculture case study of a fish, oyster and algae assemblage

    No full text
    International audienceInspired by agroecology, ecological aquaculture proposes an alternative model that uses ecology as a paradigm to develop innovative, more eco-friendly aquaculture with environmental, economic and social benefits. Integrated multi-trophic aquaculture (IMTA) is one application of this principle. Inspired by the natural trophic chain, it associates primary producers with primary or secondary consumers, providing a new source of biomass without requiring supplementary feed by recycling inorganic and organic wastes. Of these systems, land-based IMTAs demonstrate several advantages, especially easier control of nutrient flows, contaminants and/or predators. This study focused on a land-based marine IMTA, combining a recirculating aquaculture system for fish consecutively with a natural marine polyculture of microalgae and oyster cultivation. The objective was to assess the ability of the microalgal polyculture both to bioremediate fish nutrients and to sustain oyster growth. For the first time in a Mediterranean climate, we confirmed the feasibility of developing a microalgae community of interest for oysters maintained by fish effluent. Despite strong variability in microalgae production, this IMTA system resulted in significant oyster growth over the experimental period of one month, with growth results of the same order of magnitude as natural juvenile growth. In the conditions tested, this IMTA with reduced human intervention allowed a gain in recoverable biomass of 3.7 g of oyster produced per kg of fish feed distributed. By transforming waste into additional biomass, IMTAs offer a more promising, ecological avenue for aquaculture, based on a circular economy, which may in turn increase the social acceptability of fish farming

    In situ characterisation of pathogen dynamics during a Pacific Oyster Mortality Syndrome episode

    No full text
    International audienceSignificant mortality of Crassostrea gigas juveniles is observed systematically every year worldwide. Pacific Oyster Mortality Syndrome (POMS) is caused by Ostreid Herpesvirus 1 (OsHV-1) infection leading to immune suppression, followed by bacteraemia caused by a consortium of opportunistic bacteria. Using an in-situ approach and pelagic chambers, our aim in this study was to identify pathogen dynamics in oyster flesh and in the water column during the course of a mortality episode in the Mediterranean Thau lagoon (France). OsHV-1 concentrations in oyster flesh increased before the first clinical symptoms of the disease appeared, reached maximum concentrations during the moribund phase and the mortality peak. The structure of the bacterial community associated with oyster flesh changed in favour of bacterial genera previously associated with oyster mortality including Vibrio, Arcobacter, Psychrobium, and Psychrilyobacter. During the oyster mortality episode, releases of OsHV-1 and opportunistic bacteria were observed, in succession, in the water surrounding the oyster lanterns. These releases may favour the spread of disease within oyster farms and potentially impact other marine species, thereby reducing marine biodiversity in shellfish farming area

    Changes in planktonic microbial components in interaction with juvenile oysters during a mortality episode in the Thau lagoon (France)

    No full text
    Oysters modify the planktonic microbial community structure by their filtration and NH4 excretion activities. While many studies have been conducted on this subject with adult oysters, none had been carried out in situ with juveniles. Pacific oyster juveniles (Magallana gigas, previously Crassostrea gigas) died massively all over the world since 2008 in relation with OsHV-1 infection. During mortality episodes, sick and dead oysters are not separated from healthy live ones, and left to decay in the surrounding environment, with unknown consequences for the nutrient cycle and planktonic microbial components (PMC). The present study aimed to elucidate for the first time the interactions between oyster juveniles and PMC during a mortality episode. Innovative 425-L pelagic chambers were deployed weekly in situ around oyster lanterns along a stocking-density gradient in the Thau Mediterranean lagoon (France) before, during and after an oyster mortality episode, from April to May 2015. This study reveals (i) significant changes of planktonic microbial community structure during mortality episodes, with a proliferation of picoplankton (<3â€ŻÎŒm) and ciliates (Balanion sp., Uronema sp.) within 2 weeks when mortality rates and numbers of moribund juvenile oysters were highest. These changes were probably induced by oyster tissue leaching, decomposition and mineralization, which probably began during the moribund period, as suggested by an increase of PO4 concentration and N:P ratio decrease, (ii) oyster juveniles mainly retained 3–20â€ŻÎŒm plankton. In contrast to adults, picophytoplankton and small heterotrophic flagellates (<3â€ŻÎŒm) were significantly depleted in the presence of oyster juveniles. Depletion of picoplankton occurred only at the starting of the mortality episode and during the moribund phase. (iii) Oyster juvenile filtration and mortality shifted the planktonic microbial structure toward a heterotrophic microbial system, where ciliates and heterotrophic flagellates acted as a trophic link between picoplankton and oysters. The next stage of our investigation is to examine the effect of a mortality episode on pathogen fluxes in the water column, exploring their relationships with planktonic components and dead oyster flesh

    Observer, Analyser et GĂ©rer la variabilitĂ© de la reproduction et du recrutement de l’huĂźtre creuse en France : Le RĂ©seau Velyger. Rapport annuel 2013

    No full text
    La conchyliculture, et principalement l’élevage de l’huĂźtre creuse, Crassostrea gigas, constitue la principale activitĂ© aquacole française. Cette activitĂ© repose, en grande partie, sur le recrutement naturel de l’espĂšce qui assure 70% des besoins en jeunes huĂźtres (naissain) : cette activitĂ© de collecte s’appelle le captage. Les deux principaux centres de captage en France sont les bassins d’Arcachon et de Marennes-OlĂ©ron. Or, depuis une dizaine d'annĂ©es, sur le bassin d'Arcachon, le captage devient trĂšs variable: Ă  des annĂ©es de captage nul (par exemple les annĂ©es 2002, 2005, 2007) ou faible (2009, 2010, 2011) succĂšdent des annĂ©es excellentes voire plĂ©thoriques (les annĂ©es 2003, 2006, 2008, 2012, 2013). A Marennes-OlĂ©ron, cette variabilitĂ© existe, mais s’avĂšre beaucoup moins marquĂ©e. En outre, Ă  la faveur du lent rĂ©chauffement des eaux, le captage peut dĂ©sormais se pratiquer de plus en plus vers le nord. Ainsi, la baie de Bourgneuf, mais aussi la rade de Brest sont devenues, depuis quelques annĂ©es, des secteurs oĂč un nombre croissant d’ostrĂ©iculteurs pratiquent avec succĂšs le captage, mais avec, lĂ  aussi, des irrĂ©gularitĂ©s dans le recrutement qu’il convient de comprendre. Enfin, depuis la crise des mortalitĂ©s de 2008, il se dĂ©veloppe aussi sur l’étang de Thau une volontĂ© de pratiquer le captage. Afin de mieux comprendre les facteurs de variations du captage, l’Ifremer a mis en place, Ă  la demande du ComitĂ© National de la Conchyliculture, un rĂ©seau national de suivi de la reproduction : le RĂ©seau VELYGER. CrĂ©Ă© en 2008 sur fonds europĂ©ens et financĂ© dĂ©sormais par la Direction des PĂȘches Maritimes et de l’Aquaculture, ce rĂ©seau apporte, chaque annĂ©e, sur les Ă©cosystĂšmes citĂ©s prĂ©cĂ©demment, une sĂ©rie d’indicateurs biologiques (maturation, fĂ©conditĂ©, date de ponte, abondance et survie larvaire, intensitĂ© du recrutement, survie du naissain) dont l’analyse croisĂ©e avec des indicateurs hydrologiques et climatiques permet progressivement de mieux apprĂ©hender les causes de variabilitĂ© du recrutement de l’huĂźtre creuse en France, modĂšle biologique et espĂšce clĂ© de la conchyliculture française. Ce rapport prĂ©sente donc les rĂ©sultats 2013 de ce rĂ©seau d’observation et fait appel, pour la partie hydro-climatique, Ă  des observations acquises par d’autres rĂ©seaux rĂ©gionaux et nationaux. Il dĂ©taille toutes les caractĂ©ristiques par secteur du cycle de reproduction de l’huitre creuse : maturation et fĂ©conditĂ© des adultes, pĂ©riode de ponte, abondance et survie des larves, intensitĂ© du captage et mortalitĂ©s prĂ©coces. Il fournit ensuite une interprĂ©tation et une synthĂšse des rĂ©sultats 2013 par secteur et Ă  la lueur des rĂ©sultats des annĂ©es antĂ©rieures. Ainsi, pour l’annĂ©e 2013, on retiendra les faits majeurs suivants : ‱ L’annĂ©e 2013 a Ă©tĂ© trĂšs contrastĂ©e. Un printemps particuliĂšrement frais et gĂ©nĂ©ralement humide (mois de juin inclus) a fait suite Ă  un hiver tardif alors que l’étĂ© a Ă©tĂ© ensoleillĂ© et plutĂŽt chaud. Les concentrations en phytoplancton ont Ă©tĂ© dans les normes avec toujours l’existence d’un gradient Nord-Sud : elles sont plutĂŽt Ă©levĂ©es en rade de Brest, baie de Bourgneuf et bassin de Marennes OlĂ©ron et plutĂŽt faible dans le bassin d’Arcachon et l’étang de Thau. En outre, tout au long du printemps et jusqu’au mois de juillet, les tempĂ©ratures de l’eau ont Ă©tĂ© toujours infĂ©rieures aux normales (exceptĂ© dans l’étang de Thau). ‱ Ces conditions hydro-climatiques ont imprimĂ© un gradient dans la maturation et la fĂ©conditĂ© des huitres adultes avec un indice de condition trĂšs Ă©levĂ© en rade de Brest, en baie de Bourgneuf, et dans le bassin de Marennes OlĂ©ron et plutĂŽt faible dans le bassin d’Arcachon et l’étang de Thau. En outre, le dĂ©ficit thermique marquĂ© jusqu’en juillet s’est traduit par une ponte trĂšs tardive sur l’ensemble des Ă©cosystĂšmes de la cĂŽte atlantique : par exemple, elle est survenue au 25 aoĂ»t en baie de Bourgneuf, ce qui constitue une valeur record. MalgrĂ© tout, quelques pontes partielles et asynchrones ont Ă©tĂ© observĂ©es sur certains Ă©cosystĂšmes en juillet. ‱ GrĂące Ă  des tempĂ©ratures trĂšs favorables en juillet et favorables en aoĂ»t, la plupart des cohortes larvaires prĂ©sentes Ă  cette pĂ©riode (rade de Brest, bassin d’Arcachon et Ă©tang de Thau) ont eu une survie normale Ă  bonne (e.g. 0.2 Ă  plus de 1 %), ce qui s’est traduit par un captage bon Ă  excellent, avec une forte variabilitĂ© dans l’étang de Thau (cf paragraphe ci-dessous). Par contre, pour la baie de Bourgneuf et les pertuis Charentais, l’arrivĂ©e trop tardive des larves Ă  la fin aoĂ»t dans une eau fraiche (< 20°C) n’a pas permis une survie favorable (autour de 0.01 %) ce qui s’est traduit par un captage tout juste modĂ©rĂ©, faible voir nul selon les secteurs. ‱ En consĂ©quence, l’annĂ©e 2013, se caractĂ©rise par un captage trĂšs variable gĂ©ographiquement : « bon voire excellent » en rade de Brest (de 138 Ă  245 naissains/coupelle) et dans le bassin d’Arcachon (de 177 Ă  429 naissains/coupelle), modĂ©rĂ© dans le bassin de Marennes-OlĂ©ron (de 25 Ă  52 naissains/coupelle) et faible en baie de Bourgneuf (< 5 naissains/coupelle). Ce rapport montre aussi que l’étang de Thau joue un rĂŽle d’exception. MalgrĂ© une ponte d’intensitĂ© normale, des abondances de larves Ă©levĂ©es et une bonne survie des cohortes, le captage 2013 y est trĂšs variable ce qui positionne l’étang de Thau en dehors du modĂšle de fonctionnement admis pour le cycle de reproduction de l’huĂźtre creuse sur la façade atlantique. Il semble que, sur ce site, la mĂ©tamorphose constitue un verrou biologique qui peut ĂȘtre levĂ© en utilisant des pratiques zootechniques adaptĂ©es Ă  ce site particulier. Cette optimisation des pratiques zootechniques fait l’objet d’un projet rĂ©gional : le projet PRONAMED

    POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies

    No full text
    corecore