201 research outputs found

    Surface reconstruction of ancient water storage systems an approach for sparse 3D sonar scans and fused stereo images

    Get PDF
    This work presents a process pipeline that addresses the problem of reconstructing surfaces of underwater structures from stereo images and sonar scans collected with a micro-ROV on the islands of Malta and Gozo. Using a limited sensor load, sonar and small GoPro Hero2 cameras, the micro-ROV is able to explore water systems and gather data. As a preprocess to the reconstruction pipeline, a 3D evidence grid is created by mosaicing horizontal and vertical sonar scans. A volumetric representation is then constructed using a level set method. Fine-scale details from the scene are captured in stereo cameras, and are transformed into point clouds and projected into the volume. A raycasting technique is used to trim the volume in accordance with the projected point clouds, thus reintroducing fine details to the rough sonar-generated model. The resulting volume is surfaced, yielding a final mesh which can be viewed and interacted with for archaeological and educational purposes. Initial results from both steps of the reconstruction pipeline are presented and discussed.peer-reviewe

    A human iPSC line capable of differentiating into functional macrophages expressing ZsGreen: a tool for the study and in vivo tracking of therapeutic cells

    Get PDF
    We describe the production of a human induced pluripotent stem cell (iPSC) line, SFCi55-ZsGr, that has been engineered to express the fluorescent reporter gene, ZsGreen, in a constitutive manner. The CAG-driven ZsGreen expression cassette was inserted into the AAVS1 locus and a high level of expression was observed in undifferentiated iPSCs and in cell lineages derived from all three germ layers including haematopoietic cells, hepatocytes and neurons. We demonstrate efficient production of terminally differentiated macrophages from the SFCi55-ZsGreen iPSC line and show that they are indistinguishable from those generated from their parental SFCi55 iPSC line in terms of gene expression, cell surface marker expression and phagocytic activity. The high level of ZsGreen expression had no effect on the ability of macrophages to be activated to an M(LPS + IFNγ), M(IL10) or M(IL4) phenotype nor on their plasticity, assessed by their ability to switch from one phenotype to another. Thus, targeting of the AAVS1 locus in iPSCs allows for the production of fully functional, fluorescently tagged human macrophages that can be used for in vivo tracking in disease models. The strategy also provides a platform for the introduction of factors that are predicted to modulate and/or stabilize macrophage function. This article is part of the theme issue ‘Designer human tissue: coming to a lab near you’

    Mapping and visualizing ancient water storage systems with an ROV - an approach based on fusing stationary scans within a particle filter

    Get PDF
    This paper presents a new method for construct- ing 2D maps of enclosed underwater structures using an underwater robot equipped with only a 2D scanning sonar, compass and depth sensor. In particular, no motion model or odometry is used. To accomplish this, a two step offline SLAM method is applied to a set of stationary sonar scans. In the first step, the change in position of the robot between each consecutive pair of stationary sonar scans is estimated using a particle filter. This set of pair wise relative scan positions is used to create an estimate of each scan’s position within a global coordinate frame using a weighted least squares fit that optimizes consistency between the relative positions of the entire set of scans. In the second step of the method, scans and their estimated positions act as inputs to a mapping algorithm that constructs 2D octree-based evidence grid maps of the site. This work is motivated by a multi-year archeological project that aims to construct maps of ancient water storage systems, i.e. cisterns, on the islands of Malta and Gozo. Cisterns, wells, and water galleries within fortresses, churches and homes oper- ated as water storage systems as far back as 2000 B.C. Using a Remotely Operated Vehicle (ROV) these water storage systems located around the islands were explored while collecting video, still images, sonar, depth, and compass measurements. Data gathered from 3 different expeditions has produced maps of over 60 sites. Presented are results from applying the new mapping method to both a swimming pool of known size and to several of the previously unexplored water storage systems.peer-reviewe

    Long-Term Functionality of Rural Water Services in Developing Countries: A System Dynamics Approach to Understanding the Dynamic Interaction of Causal Factors

    Full text link
    Research has shown that sustainability of rural water infrastructure in developing countries is largely affected by the dynamic and systemic interactions of technical, social, financial, institutional, and environmental factors that can lead to premature water system failure. This research employs systems dynamic modeling, which uses feedback mechanisms to understand how these factors interact dynamically to influence long-term rural water system functionality. To do this, the research first identified and aggregated key factors from literature, then asked water sector experts to indicate the polarity and strength between factors through Delphi and cross impact survey questionnaires, and finally used system dynamics modeling to identify and prioritize feedback mechanisms. The resulting model identified 101 feedback mechanisms that were dominated primarily by three and four-factor loops that contained some combination of the factors: Water System Functionality, Community, Financial, Government, Management, and Technology. These feedback mechanisms were then scored and prioritized, with the most dominant feedback mechanism identified as Water System Functionality – Community – Finance – Management. This research offers insight into the dynamic interaction of factors impacting sustainability of rural water infrastructure through the identification of these feedback mechanisms and makes a compelling case for future research to longitudinally investigate the interaction of these factors in various contexts

    Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neural differentiation of embryonic stem (ES) cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming.</p> <p>Results</p> <p>Neural progenitors were produced from murine ES cells by a combination of nonadherent conditions and serum starvation. Conversion to neural progenitors was accompanied by downregulation of <it>Oct4 </it>and <it>NANOG </it>and increased expression of <it>nestin</it>. ES cells containing a GFP gene under the control of the <it>Sox1 </it>regulatory regions became fluorescent upon differentiation to neural progenitors, and ES cells with a tau-GFP fusion protein became fluorescent upon further differentiation to neurons. Neurons produced from these cells upregulated mature neuronal markers, or differentiated to glial and oligodendrocyte fates. The neurons gave rise to action potentials that could be recorded after application of fixed currents.</p> <p>Conclusion</p> <p>Neural progenitors were produced from murine ES cells by a novel method that induced neuroectoderm cells by a combination of nonadherent conditions and serum starvation, in contrast to the embryoid body method in which neuroectoderm cells must be selected after formation of all three germ layers.</p

    Statistical Analysis of the Processes Controlling Choline and Ethanolamine Glycerophospholipid Molecular Species Composition

    Get PDF
    The regulation and maintenance of the cellular lipidome through biosynthetic, remodeling, and catabolic mechanisms are critical for biological homeostasis during development, health and disease. These complex mechanisms control the architectures of lipid molecular species, which have diverse yet highly regulated fatty acid chains at both the sn1 and sn2 positions. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serve as the predominant biophysical scaffolds in membranes, acting as reservoirs for potent lipid signals and regulating numerous enzymatic processes. Here we report the first rigorous computational dissection of the mechanisms influencing PC and PE molecular architectures from high-throughput shotgun lipidomic data. Using novel statistical approaches, we have analyzed multidimensional mass spectrometry-based shotgun lipidomic data from developmental mouse heart and mature mouse heart, lung, brain, and liver tissues. We show that in PC and PE, sn1 and sn2 positions are largely independent, though for low abundance species regulatory processes may interact with both the sn1 and sn2 chain simultaneously, leading to cooperative effects. Chains with similar biochemical properties appear to be remodeled similarly. We also see that sn2 positions are more regulated than sn1, and that PC exhibits stronger cooperative effects than PE. A key aspect of our work is a novel statistically rigorous approach to determine cooperativity based on a modified Fisher's exact test using Markov Chain Monte Carlo sampling. This computational approach provides a novel tool for developing mechanistic insight into lipidomic regulation

    Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

    Get PDF
    Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.publishedVersio
    • …
    corecore