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Summary  

The roles of tumor-associated macrophages (TAMs) and circulating monocytes in human cancer are 

poorly understood. Here, we show that monocyte subpopulation distribution and transcriptomes are 

significantly altered by the presence of endometrial and breast cancer. Furthermore, TAMs from 

endometrial and breast cancers are transcriptionally distinct from monocytes and their respective 

tissue resident macrophages. We identified a breast TAM signature that is highly enriched in 

aggressive breast cancer subtypes and associated with shorter disease-specific survival. We also 

identified an auto-regulatory loop between TAMs and cancer cells driven by TNFα involving 

SIGLEC1 and CCL8, that is self-reinforcing through the production of CSF1. Together these data 

provide direct evidence that monocyte and macrophage transcriptional landscapes are perturbed by 

cancer, reflecting patient outcomes. 

 

   



Introduction  

Tumours evolve as ecosystems consisting of tumor, stromal and infiltrating immune cells. 

Macrophages are major components of this ecosystem. In mouse models of cancer, different 

subpopulations of TAMs promote angiogenesis, tumour cell invasion, intravasation, and at the 

metastatic site, tumour cell extravasation and persistent growth and suppress anti-tumor cytolytic T 

cell responses. TAMs can also promote chemo-, radio-therapy and immuno-therapy resistance 

(Cassetta and Pollard, 2018). In homeostasis, tissue macrophages have different origins including 

yolk sac, fetal liver and bone marrow. However in most, but not all, mouse cancer models, TAMs are 

recruited from bone marrow progenitors known as monocytes. These monocytes are termed classical 

(human CD14++CD16- and mouse CD11b+Ly6C+) and non-classical (human CD14+CD16+; mouse 

CD11b+Ly6C). The classical population is recruited as the tumour progresses and differentiates in 

situ to TAMs often via a CCL2-CCR2 chemokine signalling pathway. Inhibition of CCR2 signaling 

blocks TAM recruitment and thus inhibits tumor cell seeding and persistent growth improving the 

survival of mice (Qian et al., 2011). Transcriptional profiling of total isolated monocytes from renal 

carcinoma and colorectal cancer patients showed distinct proinflammatory and pro-tumoral profiles 

compared to healthy individuals (Chittezhath et al., 2014; Hamm et al., 2015). In breast cancer, higher 

numbers of non-classical are negatively associated with tumour size and disease stage (Feng et al., 

2011). However, in depth characterization of human monocytes in breast and endometrial cancer is 

lacking.  

 

The pro-tumoural behavior of monocytes and TAMs in mouse models has made them attractive 

therapeutic targets. Targeting strategies include inhibiting monocyte recruitment, depletion of TAMs 

and functional/phenotypic reprogramming (Cassetta and Pollard, 2018). These therapies however are 

limited by the lack of TAM-specific markers (Williams et al., 2016) as well as our limited 

understanding of their functions in human cancers (Takeya and Komohara, 2016). To address these 

issues, we analysed the transcriptional profiles of circulating monocytes and TAMs in breast and 

endometrial cancer. We observed profound changes in the transcriptomes of cancer monocytes and 

TAMs compared to their normal healthy counterparts. Circulating monocytes were profoundly 

different from their progeny in tissues showing the influence of the local tissue microenvironment. 

This analysis allowed identification of a TAM signature associated with poor clinical outcomes and 

two breast cancer TAM markers, CCL8 and SIGLEC1, which have prognostic value and represent 

potential therapeutic targets.  



Results 

Cancer alters the transcriptome of human monocytes  

We isolated total monocytes from women with breast (N = 32), endometrial cancer (N = 3) and 

healthy controls (N = 45) and performed bulk RNA-sequencing (RNA-seq) (Figure S1A-B). 

Although there are outliers, principal components analysis (PCA) and hierarchical clustering 

segregated the transcriptomic profiles of normal monocytes (Mo) from that of monocytes from breast 

or endometrial cancer patients (Figure 1 A, B). Thus we designated cancer monocytes as Tumor-

Educated Monocytes (TEMo). Limma differential expression analysis (DEA) revealed 865 

differentially expressed genes (DEGs) in breast TEMo compared to Mo (543 up and 322 down; FDR 

<= 0.05, File S1B) and 997 DEGs in endometrial TEMo compared to Mo (498 up and 499 down; 

FDR <= 0.05, File S1B). Due to the limited size of endometrial TEMo samples, we focused our 

downstream analysis on the breast TEMo population. Gene ontology analysis reported a number of 

enriched GO terms such as cell migration, angiogenesis, cell communication and apoptotic process 

(Figure 1C). A number of genes encoding transmembrane receptors, soluble factors, transcription 

factors and enzymes were deregulated, including increased expression of transcripts encoding 

immune regulatory receptors (CD200R1), pro-apoptotic molecules (TNFSF10, TRAIL) and pro-

angiogenic factors (Hepatocyte Growth Factor, HGF; Angiopoietin1, ANGPT1) (Figure 1D). 

Quantitative RT-PCR (qPCR) of monocytic RNA derived from an independent breast cancer cohort 

confirmed significant increased expression of these genes as independent validation of the RNA-seq 

analysis (Figure 1E).  

 

To better understand if this shift in the transcriptomes of monocytes during malignancy was driven by 

a specific subpopulation, we collected and analysed by flow cytometry classical and non-classical 

monocytes from two independent cancer cohorts (Cohort 1: endometrial and breast, Bronx, NY, USA; 

Cohort 2: breast, Edinburgh, UK) as well as healthy women (Figure 1F and Figure S1C-E, see File 

S2 for clinical information). Non-classical monocytes from cancer patients exhibited a significant 

expansion compared to healthy controls in both cohorts without significant differences between 

endometrial and breast cancer patients (Figure 1F). This expansion was associated with a significant 

increase in CX3CL1 and reduction of CCL2 in cancer patients’ sera (Figure 1G). The expression 

level of the main receptor of CCL2, CCR2, did not change among subpopulations and conditions 

although CX3CR1, the CX3CL1 receptor, was significantly downregulated in classical monocytes 

from cancer patients compared to control consistent with the alterations in monocytic populations 

(Figure 1H). Next, we isolated non-classical monocytes from 13 cancer patients (N = 6 breast and N 

= 7 endometrial) and 5 healthy women and performed RNA-seq. PCA and hierarchical clustering 

revealed distinct non-classical monocyte clusters in cancer patients versus healthy volunteers (Figure 

S1F). Limma DEA revealed 139 DEGs in non-classical monocytes from breast cancer patients 



compared to healthy individuals (103 up and 36 down; FDR <= 0.05, File S1C). Similarly, we 

identified 576 DEGs in non-classical monocytes in endometrial cancer patients compared to healthy 

individuals (501 up and 75 down; FDR <= 0.05, File S1D). Hierarchical clustering showed similar 

patterns of gene expression changes in non-classical monocytes from women with breast and 

endometrial cancer compared to healthy women (Figure S1G).  

 

Given the significant transcriptional differences in monocytes between cancer patients and healthy 

volunteers, we hypothesised that a TEMo signature from a liquid biopsy with minimal processing 

could be generated for breast cancer detection. We tested this hypothesis using total monocytes and a 

Recursive Feature Elimination with a Random Forest (RFE-RF) algorithm. The dataset was split into 

training (70%, N = 55, 32 healthy, 23 cancer samples) and testing (30%, N = 22, 13 healthy, 9 cancer 

samples) sets; the training set was used for feature selection and model training using 5 times 10-fold 

cross validation (CV). In the training set, the algorithm selected 17 highest performing genes that 

yielded an average of 85% accuracy, 88% sensitivity and 83% specificity during CV (Figure S1H). 

Subsequent validation using the holdout test set yielded 82% accuracy, 100% sensitivity and 69% 

specificity (Figure 1I-K) and area under curve (AUC) of 96% to detect cancer (Figure 1L). In 

contrast, random classifiers, as determined by 1000 rounds of random class permutations during 

Random Forest model training, had no predictive power (mean accuracy: 53%, SD ± 6.8%, p = 0.001) 

and significantly different from to the 17-gene predictive signature above (Figure S1I). 

 

Gene expression profiles of TAMs in human breast and endometrial cancers 

There is significant evidence showing pro-tumoral profiles of TAMs in mouse models of cancer; 

however, a detailed characterization of their transcriptomes and phenotypes in human cancers is still 

lacking. Thus, we analysed TAM transcriptomes by RNA-seq from breast and endometrial cancer in 

comparison to resident macrophages from homeostatic tissue after FACS sorting (Figure S2A). PCA 

and hierarchical clustering revealed distinct clusters of breast tissue resident macrophages (Br-RM) 

and breast cancer TAMs (Br-TAM) (Figure 2A, B). Limma DEA revealed 1873 DEGs in Br-TAM 

compared with Br-RM (1301 up and 572 down; FDR <= 0.05, File S1E). Gene ontology analysis 

reported several enriched GO terms such as cell motility and activation, vasculature development and 

immune response (Figure 2C). Br-TAM showed increased transcript abundance of genes encoding 

transmembrane receptors associated with immune cell activation and antigen presentation such as 

MHC class II molecules, Fc receptors, T cell co-stimulatory molecules (CD80 and CD83), TLRs and 

Ig receptor superfamilies, and TREMs (Figure 2D). Although in mice CD163 is often referred to as a 

TAM marker, we did not observe a significant difference in CD163 expression between Br-RM and 

Br-TAM (Figure S2B). Comparison of DEGs between breast TEMo and Br-TAM showed minimal 



overlap (Figure 2E). This indicates that the tissue environment determines the macrophage 

population’s phenotype independent of their origin. 

 

PCA and hierarchical clustering revealed distinct clusters of endometrial tissue resident macrophages 

(En-RM) and endometrial cancer TAMs (En-TAM) (Figure 2F,G). Limma DEA between En-RM 

and En-TAM identified 831 DEGs (115 up and 716 down; FDR <= 0.05, File S1F). Gene ontology 

analysis reported several enriched GO terms such as phagocytosis, immune response, cell 

communication, migration and blood vessel development (Figure 2H). Additionally, a number of 

genes encoding transmembrane receptors, soluble factors, transcription factors and enzymes were 

differentially expressed; the scavenger receptor MARCO, TREM1, FCG2RB and IL21RG were up-

regulated in En-TAM as compared to En-RM (Figure 2I). Similar to that found in breast cancer, En-

TAMs have minimal similarity to endometrial TEMo suggesting again that the cancer 

microenvironment directs the phenotype (Figure 2J).  

 

To better understand TAMs in different cancer types, we compared the gene expression profiles of 

Br-TAM and En-TAM. PCA and hierarchical clustering revealed two distinct groups (Figure S2C) 

with very few DEGs commonly up- and down-regulated (18 genes up and 35 down, Figure 2K, File 

S1G), indicating that breast and endometrial cancers activate cancer tissue-specific transcriptional 

profiles in TAMs. Resident macrophages from endometrial and breast tissue also exhibited a distinct 

transcriptional profile confirming the diversity of tissue macrophage phenotypes in homeostatic states 

(Figure S2D).  

 

Macrophages exhibit distinct phenotypes in response to environmental stimuli and have been 

classified into two alternative polarization states, referred to as ‘M1’ and ‘M2’ with the latter being 

immune suppressive and pro-tumoral (Martinez et al., 2006). To determine whether these polarization 

states exist within human En- and Br-TAM, we performed gene set enrichment analysis (GSEA) 

using the M1/M2 signature as proposed by Martinez et al. (File S1H). Neither Br- nor En- TAM 

showed a preferential enrichment for M2-associated genes supporting the idea that TAM phenotypes 

are much more complex and cannot be simply categorized into binary states (Figure S2E, F). 

Similarly, canonical markers for M2 that have been identified in mice, such as arginase, were 

minimally, and not differentially expressed in either Br- or En-TAM (File S1E, F). 

 

TAM gene signature is enriched in aggressive breast cancer tumors 

Increased density of TAMs has been associated with poor clinical outcomes in many human cancers 

(Yang et al., 2018). Importantly, studies using transcriptomic datasets have identified immune cell-

specific gene sets to deconvolute the tumor microenvironment and its role in cancer progression 



(Charoentong et al., 2017; Gentles et al., 2015). Taking advantage of a previously defined and 

validated compendium of immune cells (Bindea et al., 2013; Tamborero et al., 2018), we sought to 

identify a TAM-specific immune signature. We focused on Br-TAM as breast cancer has been the 

subject of greater number of in depth studies, and TAMs have been well characterized in mouse 

models of breast cancer. We selected up-regulated genes in Br-TAM compared to Br-RM (Log2FC > 

3, FDR <= 0.05) that were also highly co-expressed in the METABRIC cohort (Curtis et al., 2012), 

while filtering out genes belonging to other immune cell types (Tamborero et al., 2018) or those 

expressed by cancer cells (File S1I). As a result, we identified a 37-gene TAM signature (File S1J). 

We performed whole tumor RNA-seq on an independent cohort of 47 breast cancer patients (DUKE 

cohort, see File S2 for clinical information) and evaluated the expression of our TAM signature. 

The DUKE cohort samples (N = 37) were assigned to breast cancer molecular subtypes based on the 

PAM50 classification (Parker et al., 2009) with the TAM signature showing significantly higher 

expression in HER2 compared to Luminal A or B samples (p = 0.02) (Figure S3A, B, File S3A). 

Colony Stimulating Factor 1 (CSF1) is the major macrophage growth factor regulating their survival, 

differentiation and proliferation and its receptor is therefore a promising target for TAM depletion in 

cancer (Ries et al., 2014). A previous study of breast cancer, defined a 112-gene CSF1 response 

signature associated with higher tumor grade, decreased expression of estrogen and progesterone 

receptor and higher mutation rate (Beck et al., 2009). Using this CSF1-response signature, we 

stratified our dataset (DUKE cohort) into 3 groups (CSF1-High, -Mid and -Low). The TAM signature 

was significantly higher in the CSF1-High compared to -Mid and -Low groups suggesting that TAMs 

are associated with more aggressive tumors (Figure 2L, File S3B).  

 

We next sought to investigate whether the identified TAM signature was associated with clinical 

outcome in the METABRIC cohort. As with the DUKE cohort, we observed a higher expression of 

the TAM signature in Basal, claudin-low, HER2 and Luminal B compared to Luminal A tumors, 

again suggesting an association of the TAM signature with more aggressive tumors (Figure 2M, File 

S3C). Consistent with these data, high expression of the TAM signature was significantly associated 

with shorter disease-specific survival (HR = 1.3, p = 0.006) (Figure 2N). A previously identified 

macrophage immune signature (Bindea et al., 2013; Tamborero et al., 2018), consisting mainly of 

lineage markers, showed a similar trend of high expression in aggressive tumors, but was not 

significantly associated with disease-specific survival (HR = 1.17, p = 0.1) (Figure S3C, D, File S1I, 

File S3D). Taken together, these results suggest a positive association of unique populations of TAMs 

with poor clinical outcomes and more aggressive breast cancers. 

 



Identification of breast TAM markers 

One of the main limitations of targeting TAMs for therapeutic approaches is the lack of reliable and 

specific markers. To address this, we selected genes encoding transmembrane receptors in our TAM 

signature. We selected SIGLEC1 (CD169), as it was one of the top up-regulated genes in Br-TAM 

(Log2FC = 7.2, FDR = 0.0017) compared to Br-RM and it was also correlated with expression of the 

pan-macrophage marker CD163 (R = 0.62, p = 2.2e-16) (Figure 3A). In the METABRIC cohort, 

univariate analysis showed that SIGLEC1 high expression was significantly associated with shorter 

disease-specific survival (HR = 1.5, p = 1.2e-0.5, Figure 3B). Consistent with this, in Cox 

multivariate analysis after adjusting for clinical parameters such as ER, PR, HER2, grade and tumor 

size, SIGLEC1 high expression was independently significantly associated with shorter disease-

specific survival (HR = 1.42, p = 1.85e-0.4, File S3E). Internal validation by qPCR confirmed the 

significant up-regulation of SIGLEC1 mRNA observed in the RNA-seq analysis (Figure 3C). 

Furthermore, SIGLEC1 showed significantly higher expression in breast tumor stroma compared to 

normal breast stroma in the two datasets available (Figure 3D) (Finak et al., 2008; Karnoub et al., 

2007).  

 

We used multicolour flow cytometric analysis to determine SIGLEC1 expression at the protein level 

in an independent cohort of breast cancer patients and found that SIGLEC1 was expressed on Br-

TAM (Figure S4A, B), but not on other immune cells (Figure S4C, D) or CD45 negative non-

immune cells (Figure S4 E, F), indicating specificity to macrophages/TAMs (Figure S4, G, H). In 

the circulation, classical and non-classical monocytes (Figure S4 I, K), but not granulocytes (Figure 

S4 L, M) exhibited low expression of SIGLEC1 with no difference between cancer and non-cancer 

patients observed. These data reveal preferential up-regulation of SIGLEC1 on Br-TAM.  

 

Having established that SIGLEC1 is only significantly expressed by Br-TAM, we performed 

immunofluorescent (IF) staining using anti-SIGLEC1 and anti-CD163 antibodies on tissue biopsies 

from patients with invasive breast cancer and benign lesions (Figure 3E). Using machine-learning 

image analysis (Figure S5A) for unbiased quantification, we were able to segment and classify 

CD163 and SIGLEC1 single- and double-positive populations and determine their numbers within 

whole and sub-regions of the tissue sections. Cancer tissues had higher numbers of macrophages per 

mm2 tissue area, and a higher percentage of SIGLEC1-positive cells compared to benign tissue 

(Figure 3F); results that were further confirmed by confocal microscopy of the stained sections 

(Figure S5B). These results indicate that SIGLEC1 is a human breast TAM-associated marker. 

 



SIGLEC1 positive macrophages accumulate in Basal and HER2 breast cancers 

To investigate expression of SIGLEC1 in different breast cancer subtypes we performed multiplex 

immunohistochemistry (Tsujikawa et al., 2017) on breast cancer tissues that had been independently 

acquired from the DUKE cohort. Using image cytometry we identified 3 distinct Br-TAM subtypes 

(CSFR1+CCR2-CD68+CD163+SIGLEC1-, CSFR1+CCR2-CD68+CD163+SIGLEC1+ and 

CSFR1+CCR2-CD68+CD163-SIGLEC1+, Figure S6A) confirming results reported in Figure 3F. 

Quantification of these three Br-TAM populations revealed enrichment in Basal tumors compared to 

HER2 and luminal subtypes, while the three subsets were almost absent in tissues from prophylactic 

mastectomies (Figure S6B, C). This is consistent with the increased expression of the TAM signature 

in aggressive breast tumors at the mRNA level. 

 

Next, we investigated the regulation of SIGLEC1 expression in human macrophages using human 

monocyte-derived macrophages (MDM), induced pluripotent stem cell (iPSC) derived macrophages 

(iPSDM), and THP1 cells differentiated into macrophages using PMA (PMA-THP1). All three were 

exposed to conditioned medium (CM) from MDA-MB-231 and MDA-MB-468 cell line derived from 

triple negative breast cancers (Neve et al., 2006). CM from both cell lines increased expression of 

SIGLEC1 mRNA in MDM and PMA-THP1 (Figure S7A, B). Additionally, CM enhanced SIGLEC1 

protein expression on the cell surface of iPSDM (Figure S7C, D). These results indicated that cancer 

cells actively enhance the expression of SIGLEC1 on human macrophages.  

 

In order to further investigate the stimulus generated by cancer cells we stimulated PMA-THP1 

macrophages with a panel of pro-inflammatory and anti-inflammatory cytokines and measured 

SIGLEC1 expression by qPCR. The inflammatory mediator positive control, Lipopolysaccharides 

(LPS) and the pro-inflammatory cytokine Tumor Necrosis Factor α (TNFα) were the main modulators 

of SIGLEC1 expression, while Interleukin 1β (IL1β) and Interferon γ (IFNγ) produced a modest 

effect (Figure S7E). Conversely, anti-inflammatory cytokines did not affect SIGLEC1 expression in a 

significant way, except for a down-regulation after combined exposure with IL4 and TGF (Figure 

S7F). 

 

In order to investigate if cancer cells produce TNFα, we performed ELISA on MDA-MB-231 and 

MDA-MB-468 CM, but did not detect significant levels of this cytokine (Figure 3G). In contrast, 

qPCR analysis indicated a significant up-regulation of TNFα at the mRNA level in Br-TAM 

compared to Br-RM (Figure 3H). Consistent with this elevated expression in Br-TAM, MDM and 

iPSDM incubated with either MDA-MB-231 or MDA-MB-468 CM produced significantly higher 

levels of TNFα compared to untreated controls at the protein level (Figure 3G, I, File S4A). We next 

neutralized TNFα in MDA-MB-231 and MDA-MB-468 CM-treated iPSDM (Figure 3G) and 



exposed new iPSDM to the neutralized CM. TNFα neutralization resulted in a significant reduction of 

SIGLEC1 expression compared to isotype control treated CM (Figure 3J,K). These results indicate 

that Br-TAM respond to cancer signals by up-regulating the expression of SIGLEC1 and by 

producing TNFα that further supports SIGLEC1 expression in macrophages. 

 

CCL8 is a breast TAM marker 

In order to identify additional mediators of the cross-talk between human cancer cells and 

macrophages we performed a qPCR array for inflammatory proteins on PMA-THP1 cells incubated 

with either MDA-MB-231 or MDA-MB-468 CM (Figure 4A, B). PMA-THP1 exposed to the 

different CMs commonly up-regulated the expression of 19 pro-inflammatory genes (Figure 4C, File 

S4B). By comparing this list with genes up-regulated in Br-TAM we identified seven factors 

commonly up-regulated (Figure 4D). Among these 7 factors CCL8 (Monocyte Chemotactic protein-2 

or MCP-2), was the most significantly up-regulated factor in the Br-TAM dataset. Interestingly, 

CCL8 has been reported to play a role in the tumor microenvironment by supporting mouse mammary 

cancer cells dissemination (Farmaki et al., 2016). In our data, CCL8 was correlated with CD163 

expression (R = 0.68, p = 2.2e-16) (Figure 4E). In the METABRIC cohort, univariate analysis 

showed that CCL8 high expression was significantly associated with shorter disease-specific survival 

(HR = 1.3, p = 0.0019, Figure 4F). However, in Cox multivariate analysis, after adjusting for clinical 

parameters such as ER, PR, HER2, grade and tumor size, high CCL8 expression was not 

independently significantly associated with shorter disease-specific survival (HR = 1.16, p = 0.13, 

File S3F). Internal validation by qPCR on samples used for RNA-seq showed significant up-

regulation of the CCL8 transcript in Br-TAM (Figure 4G). We next validated by incubating PMA-

THP1 macrophages, MDM and iPSDM with cancer CM and assessed CCL8 mRNA and protein 

levels (Figure S7 G-I and Figure 4H). In addition, CCL8 fluorescence in situ hybridization (FISH) 

analysis of breast cancer tissue sections revealed that CCL8 mRNA is found in Br-TAM but not in 

cancer cells (Figure 4I). There were no differences in CCL8 serum levels between normal and cancer 

patients indicating local production (Figure S7J). CCL8 production in human macrophages was 

induced by both pro-inflammatory and anti-inflammatory stimulation (Figure S7K, L) consistent 

with reports using cultured mouse macrophages (Makita et al., 2015).  

 

Similarly to the observations with SIGLEC1, TNFα modulated the expression of CCL8 (Figure S7K). 

We neutralized TNFα in MDA-MB-231 and MDA-MB-468 CM-treated iPSDM with neutralizing 

antibodies and exposed new iPSDM to the neutralized CM. TNFα neutralization resulted in a 

significant reduction of CCL8 expression compared to isotype control treated CM, confirming a role 

for TNFα in CCL8 regulation in macrophages exposed to cancer cell CM (Figure 4J, K). CCL8 

treatment of both cancer cell lines significantly up-regulated the expression of CSF1, at both the 



mRNA and protein level (Log2FC > 1, p < 0.05, Figure 4L, File S4C), as well as TNFα and IL1β 

(Figure 4M). These results indicate that CCL8 is a marker of human breast TAMs and that cancer 

cells are able to modulate its expression in these cells by a TNFα-dependent mechanism. In turn, 

cancer cells respond to CCL8 by producing the macrophage survival and proliferation factor (CSF-1) 

and pro-inflammatory mediators, which further propagate the auto-stimulatory loop. 

 

CCL8 enhances breast cancer cell motility and monocyte recruitment 

We investigated the effect of CCL8 on cancer cells. Cancer cell lines were analyzed for expression of 

the five reported CCL8 receptors (Figure S8A, B). Of these CCR1, 2, 5 and 8 were detected on the 

cell surface of both MDA-MB-231 and MDA-MB-468 cells. We then stimulated MDA-MB-231 and 

MDA-MB-468 with recombinant CCL8 (rCCL8) and performed a qPCR array for genes associated 

with breast cancer progression. Using stringent criteria for changes in gene expression (Log2FC >2, p 

< 0.05), six genes were identified that were commonly up-regulated in both cell lines following 

stimulation with rCCL8 (Figure S9A-C). These gene products have been predicted to be involved in 

cancer cell invasion (MMP2, MMP9, ADAM23) (Roomi et al., 2009) and progression (IL-6, EGF, 

GLI1) (Knüpfer and Preiß, 2006; Masuda et al., 2012) (Figure S9D, File S4C). Similar genes were 

identified by a metastasis qPCR array after exposure of MDA-MB-231 and MDA-MB-468 with CM 

from cancer-cell primed MDM (Figure S9E-H, File S4D). Consistent with the up-regulated 

expression of genes involved in invasion, rCCL8 treatment enhanced motility of MDA-MB-231 cells 

(Figure 4N, O), and to a greater extent than previously reported for CCL2 (Bin Fang et al., 2012). 

Stimulation with rCCL8 did not affect cell proliferation of either breast cancer cell line (Figure S8C). 

Finally, we assessed the ability of CCL8 to recruit monocytes using an in vitro chemotaxis assay with 

THP1 monocytic cells in the presence of CCL2 and CCL8 as chemo-attractants. Both CCL2 and 

CCL8 attract these monocytic cells compared to control, indicating a similar effect of these 

chemokines on myeloid cell recruitment (Figure 4P). These data indicate a potential CCL8-

dependent cross-talk between human macrophages and neoplastic cells that drives tumor cell invasion 

and monocyte infiltration. 

 

SIGLEC1/CCL8 gene signature is an independent prognostic factor in ER+ 

breast cancer 

To assess whether a 2-gene SIGLEC1/CCL8 signature had clinical relevance in breast cancer, Cox 

proportional hazard regression analysis was performed on a breast cancer stroma dataset (Finak et al., 

2008) representing 53 patients suffering 17 recurrence events reported over a median follow-up time 

of 8.7 years. Gene expression values of SIGLEC1/CCL8 were dichotomized into high and low 

expression groups according to all possible cutoffs (Pearce et al., 2017). Univariate analysis revealed 



that SIGLEC1/CCL8 high expression was associated with shorter recurrence-free survival (RFS) (HR 

= 3.3, p = 0.018) (Figure 5A). To further validate the clinical relevance of the SIGLEC1/CCL8 gene 

signature, we utilized the METABRIC cohort (N = 1350) with 456 breast-cancer specific events over 

a median follow-up time of 9.69 years. In univariate analysis high expression of SIGLEC1/CCL8 was 

significantly associated with shorter disease-specific survival (HR = 1.4, p = 4e-04) (Figure 5B), 

along with HER2 status (HR = 2.1, p = 2.3e-10), grade (HR = 1.8, p = 1.9e-09) and tumor size (HR 

=1.8, p = 0.002). Conversely, ER (HR = 0.6, p = 7.8e-07) and PR (HR = 0.64, p = 3e-06) status were 

significantly associated with better disease-specific survival. In Cox multivariate analysis, 

SIGLEC1/CCL8 high expression was associated with shorter disease-specific survival but didn't reach 

significance (HR = 1.2, p = 0.06, File S5). 

 In a subset of ER positive patients from the METABRIC cohort (N = 960), univariate analysis 

revealed that SIGLEC1/CCL8 high expression was significantly associated with shorter disease-

specific survival (HR = 1.5, p = 0.001), along with grade (HR = 1.7, p = 9e-06) and age (HR = 1.5, p 

= 0.002) (Figure 5C, File S5). Cox multivariate analysis demonstrated that SIGLEC1/CCL8 high 

expression was independently significantly associated with shorter disease-specific survival (HR = 

1.35, p = 0.014) along with, grade (HR = 1.54, p = 3.4e-04) and age (HR = 1.44, p = 0.008). 

 

Discussion  

In mouse models of cancer, cells of the mononuclear phagocytic system play profound roles in 

shaping the tumour microenvironment to one that promotes malignancy. Despite the large number of 

studies in mice and clinical correlative data suggestive of similar roles in human cancers for TAMs, 

there is little data describing their phenotypes. In the present work, we have shown that in breast and 

endometrial cancers circulating monocytes and TAMs respond to the presence of malignancy by 

altering their transcriptomes and therefore showing distinct profiles compared to healthy women. 

TAM transcriptional profiling yielded a 37-gene TAM-specific signature that is highly expressed in 

aggressive forms of breast cancers and associates with poor clinical outcomes. Furthermore, detailed 

analysis and mechanistic studies showed paracrine signalling interactions between tumor cells and 

TAMs that involve SIGLEC1 and CCL8, two TAM markers that in multivariate analysis were 

independent predictors of disease-specific survival in ER positive patients. 

 

We observed an expansion in the non-classical monocytic population CD14+CD16++, a result 

consistent with evidence for a role of these cells in cancer (Bharat et al., 2017). In contrast, Hanna et 

al. reported that in mouse models of metastasis depletion of non-classical monocytes correlated with 

enhanced metastasis through inhibition of NK cell activity (Hanna et al., 2015). Recently however, 

non-classical monocytes have been shown to contribute to anti-VEGF therapy resistance in mouse 

models of cancer (Jung et al., 2017). This therapy has also been associated with enhanced CX3CL1 



levels in human colon cancers, leading to the recruitment of non-classical monocytes to the vascular 

bed of the tumor, where they promote accumulation of neutrophils and immune suppression through 

IL-10 secretion (Jung et al., 2017). In our patient cohort, we detected significantly higher levels of 

CX3CL1 but not CCL2 in the sera of breast cancer patients compared to healthy controls. This 

chemokine increase could explain the elevated number of monocytes, and also potential activation 

when this cancer is present. In order to rule out the possibility that the transcriptional differences 

observed in total monocyte populations were only due to alteration of subpopulation frequency, we 

sequenced equal amount of non-classical monocytes from normal and cancer patients. The two 

populations were still very different suggesting that cancer was the main driver of the TEMo 

transcriptional shift. Using total monocyte transcriptional profiles we identified a 17-gene signature, 

which indicated the presence of cancer. Such an approach could be translatable to the clinic where 

simple monocyte purification methods coupled with array technology could be employed. However, 

before this method would be applicable a large multicenter trial is needed. 

 

In mouse models of cancer, monocytes are recruited to primary or metastatic tumors where they 

differentiate to TAMs that promote tumor progression and metastasis (Arwert et al., 2018). However, 

little is known about TAMs in human cancers. We profiled TAMs from samples belonging to the 

same cohort of patients from which we isolated TEMos and defined their transcriptional landscape 

through bulk RNA-seq. Surprisingly, in contrast to the monocytes, TAM transcriptomes from 

endometrial and breast cancers are distinct from each other, from their respective resident 

macrophages and their progenitor monocytes. These data suggest the existence of cancer specific 

niches at the tissue level that influence the TAM transcriptional profile according to tumor location 

and subtype. Multiplex IHC identified at least 3 TAM sub-populations (CSFR1+CCR2-

CD68+CD163+SIGLEC1-, CSFR1+CCR2-CD68+CD163+SIGLEC1+ and CSFR1+CCR2-

CD68+CD163-SIGLEC1+) in breast cancer patient samples and showed that there is considerable 

heterogeneity in TAM populations within the tumor. Although macrophages were traditionally 

classified into M1 and M2 polarization states, more recent studies describe a spectrum of activation 

states (Xue et al., 2014) and an association of both states with tumor progression (Franklin et al., 

2014). Indeed, our analysis failed to reveal a unique polarization state in human TAMs. A recent 

study that analysed the transcriptomes of CD45+ cells from healthy tissue and breast tumors at the 

single cell level (Azizi et al., 2018), confirmed the heterogeneity of myeloid cells. However, unlike 

this study the moderate depth of scRNA-seq studies doesn’t allow for identification of novel markers. 

 

High expression of macrophage gene signatures has been associated with high tumor grade and poor 

clinical outcomes (Gentles et al., 2015). In our study, we identified a TAM signature that was highly 

expressed in the most aggressive breast cancer subtypes and enriched in a CSF-1-high group that has 

been previously associated with higher tumor grade, decreased expression of estrogen and 



progesterone receptor, and higher mutation rate (Beck et al., 2009). Compared to a pan-macrophage 

immune signature (Bindea et al., 2013; Tamborero et al., 2018), the TAM signature was associated 

with shorter disease-specific survival in the METABRIC cohort. These results, along with recent 

evidence of the role of TAMs in chemo- and immuno-therapy resistance (Neubert et al., 2018), 

highlight the need to study TAMs in human cancers and to identify markers for TAM-specific 

targeting. Therefore, we focused on transmembrane receptors included in the TAM signature, of 

which, SIGLEC1, a sialic binding receptor mainly expressed by macrophages, was the most highly 

differentially expressed in our Br-TAM dataset as well as in publically available breast cancer stroma 

datasets. In homeostatic conditions, SIGLEC1 positive macrophages are mainly localized in the bone 

marrow, liver, spleen, colon and lymph node (Chávez-Galán et al., 2015) and they are thought to be 

involved in erythropoiesis and modulation of adaptive immune responses (Chávez-Galán et al., 2015). 

Consistent with our findings, SIGLEC1 positive macrophages have been identified in colorectal (Li et 

al., 2015) and hepatocellular carcinoma (Zhang et al., 2016). Interestingly, while infiltration of 

SIGLEC1 positive macrophages in colorectal cancer was associated with tumor progression, in 

hepatocellular carcinoma they predicted favourable patient outcomes, underpinning the hypothesis 

that TAM phenotypes/activation are organ- and cancer-specific (Zhang et al., 2016).  

 

In order to elucidate the crosstalk between human TAMs and breast cancer cells, we focussed on 

soluble factors produced by TAMs in response to cancer cell CM. Our screening identified CCL8 as 

the top upregulated soluble factor in Br-TAM. This chemokine is involved in the regulation of 

activation of immune cells involved in inflammatory responses (Proost et al., 1996). CCL8 expression 

was reported to be associated with  metastasis formation in melanoma (Barbai et al., 2015) and more 

relevantly in a mouse model of breast cancer (Farmaki et al., 2016), where CCL8 promoted cancer 

cell invasion and motility. Interestingly, SIGLEC1 positive macrophages in the mouse intestine 

produce high levels of CCL8 in response to sterile and non-sterile inflammatory stimuli (Asano et al., 

2015). CCL8 production was also shown to sustain dextran sulphate sodium colitis and to recruit pro-

inflammatory monocytes to the inflamed site. We demonstrated that TAMs are the major source of 

CCL8, and CCL8 and SIGLEC1 engage in a tumor cell-TAM regulatory loop, involving TNFα that in 

turn enhances their expression and leads to increased tumor cell motility. Our data showed that cancer 

cells and TAMs secrete high levels of TNFα that further supports CCL8 production in the tumor 

microenvironment and that cancer cells respond to the presence of CCL8 by producing significant 

higher levels of CSF-1, the major survival and proliferation factor for macrophages. The high 

concentration of CCL8 not only supports the cancer-TAM crosstalk, but also acts as a monocyte 

chemoattractant. We therefore propose CCL8 will also increase monocyte infiltration into the tumor 

site, thus generating more pro-tumoral TAMs (Figure 6). Consistent with this positive auto-regulatory 

loop that potentially increases TAM recruitment and cancer cell malignancy SIGLEC1 and CCL8 

were associated with shorter disease-specific survival and recurrence-free survival in public datasets 



derived from whole tumor homogenates. Such data reinforce the concept derived from mouse models 

that TAMs in the tumor microenvironment promote malignancy, and the identification of uniquely 

expressed genes in human TAMs provides opportunities for new therapeutic targets and 

diagnostic/prognostic markers. 
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Material and Methods 

Patient and control samples 

All study protocols were approved by the IRB of the Albert Einstein Medical College (Bronx, NY, 

USA) and by The University of Edinburgh (Edinburgh, UK), and Duke University (Durham, NC) 

ethics committees as appropriate. Informed consent was obtained from all human subjects included in 

this study. For control samples, mononuclear cells were isolated from peripheral blood obtained from 

female healthy individuals through the New York Blood Center, USA or Cambridge Biosciences, UK. 

In some cases, blood was also donated from volunteers in the Bronx, NY who were age and weight 

matched to the Bronx cancer cohort. Peripheral blood (20ml) was obtained from breast and 

endometrial cancer patients attending the Montefiore Medical Center, Bronx, NY, USA and breast 

cancer patients (15mL) from NHS, Edinburgh, Scotland, UK. Breast cancer tissue (0.1-1 grams) and 

endometrial cancer tissue (0.1-1 grams) was obtained from Montefiore Medical Center, NY, USA, the 

NHS, Edinburgh, Scotland, UK (breast only), and Duke University, Durham NC, USA (breast only). 

Pathologically the breast cancer patients consisted of invasive breast cancers. The endometrial cancer 

patients consisted of Type I (Endocarcinoma) and Type II (UPSC) cancers. The Duke cohort patients 

had biopsy-confirmed invasive tumors at least 1.5 cm at diagnosis (see File S2 for detailed clinical 

information) Normal breast tissue from mammoplasty reduction surgeries (25-50 grams) was 

obtained from the Human Tissue Procurement Facility (HTPF), Ohio State University, USA; 

normal/benign endometrial tissue (1-2 grams) was obtained after surgery for conditions unrelated to 

cancer from Montefiore Medical Center, NY, USA; breast tissue (0.5-1 grams) from patients with 

benign conditions was obtained from NHS, Edinburgh, Scotland, UK. The exclusion criteria for 

cancer patients at baseline included systemic metastatic disease, any inflammatory disorder, and 

active infection or immunocompromised status not related to cancer. All the patients recruited were 

chemotherapy and radiotherapy naive before collection. Blood collection was performed before 

surgery. Tissue samples were collected as part of definitive surgical intervention. For the DUKE 

cohort, patients with newly diagnosed invasive breast cancer were recruited from the breast clinic at 

the Duke Cancer Institute from 2012 to 2016. Eligible patients had no evidence of metastatic disease 

and were scheduled to undergo either lumpectomy or mastectomy. Primary tumors measured at least 

1.5cm clinically. Patients with either node negative or node positive disease were included.Blood was 

collected preoperatively, and trained pathologists collected tumor from surgical excision specimens. 

Both blood and tumor samples were shipped on ice to Oregon Health & Science University Hospital 

(OHSU) for immune and genomic assays.  

 



Isolation of human blood monocytes 

All control and cancer blood samples were collected and processed by the same person according to 

site, HZ in the Bronx and LC Edinburgh. They were processed as attained and not batched together 

according to sample type. All the blood samples were collected in Venous Blood Collection Tubes 

containing EDTA and stored immediately at 4°C after collection. Blood was centrifuged at 700 RCF 

for 10 min at 4°C in a swinging bucket rotor to separate cells from plasma, and was then subjected to 

centrifugation in conical tubes for 10 min at 16,000 x g at 4°C in a fixed angled rotor, immediately 

aliquoted and stored at -80°C. After red blood cell lysis (RBC lysis buffer, Biolegend) cells were 

centrifuged 500 RCF 5 min at 4°C, counted and stained for FACS analysis; the remaining cells were 

fresh or frozen in 10% v/v DMSO, 90% v/v Fetal bovine serum solution for subsequent cell sorting 

and RNA extraction. 

 

Isolation of human tissue macrophages 

Cancer tissue and normal endometrial tissue were washed with PBS in a petri dish and tissue was 

chopped into small fragments with a razorblade. The sample was transferred to a 15-50 ml tube 

according to size and Liberase enzymes TL and DL (Roche) and DNAse (Roche) were added. Tissue 

was digested at 37°C on a rotating wheel for 1h-18h depending on tissue weight; at the end of 

digestion the cell suspension was filtered and washed with PBS 1% w/v Bovine Serum Albumin 

(BSA, Sigma-Aldrich). The pellet was resuspended in PBS, 1%w/v BSA and cells counted and 

stained for FACS sorting or analysis. Macrophages were isolated according to the method described 

(Cassetta et al., 2016). 

 

FACS Sorting and analysis 

PBMCs or total blood cells were counted and resuspended in PBS, 1%w/v BSA; blocking of Fc 

receptors was performed by incubating samples with 10% v/v human serum (Sigma Aldrich) for 1h 

on ice. For FACS analysis 5x105 cells were stained in a final volume of 100 µL using the following 

antibodies: CD45-PE-Texas Red, CD3-, CD56-, CD19-BV711, CD11b-BV605, CD14-BV510, 

CD16-EF450, CX3CR1-FITC, HLA-DR-BV650, CD64-APC-CY7, CD80-PECY7, CCR2-PECY7, 

CD86-APC, CD95-PECY7 (Biolegend). For monocyte and macrophage sorting cells were stained and 

antibody concentration was scaled up based on cell number; cells were stained with the following 

antibodies: CD45-AlexaFluor 700, CD3-, CD56-, CD19- PECY5, CD14-FITC, CD11b- PECy7, 

CD16- PE-Texas Red, CD163-APC (Biolegend). Cancer cell lines were stained for the 5 CCL8 

receptors with the following antibodies: CCR1-PE, CCR2-PECy7, CCR3-FITC, CCR5-PE, CCR8-PE 

(Biolegend) (Full list File S7). Cells were incubated in the dark for 1h on ice; after washing with PBS 

1%w/v BSA (analysis) or PBS 0.1%w/v BSA (sorting) cells were filtered and resuspended in the 



appropriate buffer before analysis or sorting. FACS analysis was performed using a 6-laser Fortessa 

flow cytometer (BD); FACS sorting was performed using FACS AriaII and FACS Fusion sorters 

(BD). Cell sorting was performed at 4ºC in 1.5 ml RNAse and DNAse free tubes (Simport, Canada) 

pre-filled with 750 µl of PBS 0.1%w/v BSA; at the end of each isolation a sorting purity check was 

performed. A minimum of 5,000 events in the monocyte/macrophage gate was acquired for FACS 

analysis. Results were analyzed with Flowjo (Treestar) or DIVA software (BD). 

 

RNA extraction and sequencing of purified cells 

Immediately after sorting all the samples were centrifuged at 450 RCF for 10 min at 4°C. The cell 

pellet was resuspended in 350 µL of RLT lysis buffer + 1% βmercaptoethanol, and RNA extracted 

with RNAeasy Microkit (Qiagen) according to manufacturer’s instructions. RNA quantity was 

determined by QUBIT (Invitrogen); total RNA integrity was assessed by Agilent Bioanalyzer and the 

RNA Integrity Number (RIN) was calculated; samples that had a RIN > 7 were selected for RNA 

amplification and sequencing. RNA was amplified with Ovation RNA-seq Amplification kit v2 

(Nugen) according to manufacturer’s instructions. Amplified RNA was sent to Albert Einstein 

Genomic Facility or BGI where library preparation, fragmentation and paired-end multiplex 

sequencing were performed (HIseq 2000 and 2005, Illumina). All samples were processed and 

randomly assigned to lanes without knowledge of clinical identity to avoid bias and batch effects. 

 

Sequencing alignment and Quantification 

FastQ files of 2x100bp paired-end reads were quality checked using FastQC (Andrews, 2012). 

Samples were filtered for low quality reads (Phred score >= 20) and adapters were removed when 

necessary using Cutadapt. Quality controlled reads were then aligned to the Human reference genome 

(GRCh37/hg19) using STAR aligner (version 2.3) (Dobin et al., 2012). Quantification of genes was 

performed using the count function of HTSeq (Anders et al., 2014). Reads were counted at the gene 

level and the unstranded option was used (-s no). A summary of number of reads and % of alignment 

of all samples can be found in File S1A. 

 

Statistical analysis for differentially expressed genes 

All statistical calculations were performed in R programming language (version 3.2.3). For 

macrophage samples, genes with count per million (CPM) reads > 1 in at least N samples (N number 

of the fewest replicates of a condition) was retained. Gene expression levels were normalized using 

the Trimmed Mean of M-values (TMM) method using the calcNormFactors() function and log2 

transformed using the cpm() function from the EdgeR package in R (Robinson and Oshlack, 2010). 



Differential expression analysis was performed with sample quality weights using the package limma-

voom package in R (Ritchie et al., 2015). For monocyte samples, gene expression levels were 

normalized according to upper-quantile normalization using calcNormFactors() function and log2 

transformed using the cpm() function. Normalized reads were fed to the Combat function of the 

Surrogate Variable Analysis (SVA) package (Leek, 2014). Samples were corrected on the basis of the 

sequencing batch they were processed. Differential expression analysis was performed using the 

limma package. Significantly differentially expressed genes (DEGs) were selected with controlled 

False Positive Rate (B&H method) at 5% (FDR <= 0.05). Up-regulated genes were selected at a 

minimum log2 fold change of 1.5 and down-regulated genes at a minimum log2 fold change of -1.5. 

PCA plots were drawn using the TMM/log2 transformed (macrophages) or the batch effect corrected 

(monocytes) normalised values on expressed genes. Heatmaps were drawn on the normalized 

expression matrix using the pheatmap package in R. Euclidean distance and complete linkage were 

used for hierarchical clustering. Venn diagrams were constructed based on the overlapping 

differentially expressed transcripts (FDR <= 0.05, Log2FC more or less than 1.5/-1.5). 

 

Enrichment and Pathway Analysis 

Gene set enrichment analysis was performed using the gsea() function from phenoTest package in R 

(Planet, 2013). The function is used to compute the enrichment scores and simulated enrichment 

scores for each variable and signature. For our analysis, the logscale variable was set to false, as the 

log2 transformed expression values were fed into the function and 20,000 simulations were used (B = 

20,000). The Database for Annotation, Visualization and Integrated Discovery (DAVID) functional 

annotation tool was used for gene ontology and pathway (KEGG and Reactome) analysis on the list of 

differentially expressed genes (FDR <= 0.05, Log2FC more or less than 1.5/-1.5). Important GO terms 

and pathways were selected based on an FDR <= 0.05. 

 

Recursive feature elimination with Random forest (RFE-RF) 

Recursive feature elimination (RFE) is a wrapper feature selection method that starts by fitting the 

classification model to all features and then each feature is ranked for its importance to the model. We 

assume that S is a sequence of values that indicates the number of features to be retained. At each 

iteration, the Si top ranked features are used to refit the model and the subset of genes with the highest 

accuracy is selected. We used the RFE feature selection with resampling and a Random forest (RF) 

classifier as implemented in the caret package in Bioconductor (Kuhn, 2015). In brief, RF is an 

ensemble learning method that constructs many decision trees (forest) and uses a majority vote to 

make predictions (Breiman, 2001). Assuming N number of samples in the training set, the algorithm 

creates a subset of the data of the N samples with replacement, and at each node, m number of genes 



are selected at random from all the genes M. The variable m that gives the best split is selected and 

used for a binary split. This procedure is repeated for each node until the tree is grown to terminal 

nodes k.  

 

Before model training, the breast TEMo dataset of N = 77 samples (32 healthy, 45 breast cancer) was 

filtered for lowly expressed genes (CPM > 1 across conditions), normalized using upper-quantile 

normalization, log2 transformed using the cpm() function and corrected for batch effects using 

ComBat. Then, the dataset was split into training (70%, N = 55, 32 healthy, 23 cancer samples) and 

testing (30%, N = 22, 13 healthy, 9 cancer samples). While the test set was kept on the side, the 

training set was used for RFE-RF model training and feature selection using 5 times repeated 10-fold 

cross-validation (CV). In short, the training samples were randomly partitioned into k (k = 10) 

subsamples. Out of the k sub-samples, one is kept for testing the classifier, and the remaining k-1 

subsamples are used for training the classifier. Then the whole process is repeated n= 5 times. For the 

training set, overall accuracy, sensitivity and specificity were calculated averaging the CV predictions 

for the optimal subset. The model with the highest average accuracy was selected as optimal. The 

optimal model was the fitted on the test set that had not been used for training or feature selection. For 

the RFE-RF model, we selected subsets of features ranging between 2 to 30, variable ntree was set to 

500 trees and variable mtry was calculated as √p , where p  is the number of features used during 

training the model. The receiver-operating characteristic (ROC) curves were drawn using the ROCR 

package in R (Sing et al., 2005). To determine the accuracy rates of the classifiers that can be 

obtained by chance, a RF model using the 17 selected genes was trained with permuted class labels. 

This process was performed during training 1,000 times using 5 x 10-fold CV. The accuracy of the 

1,000 random classifiers was recorded. The P-value was calculated by counting the accuracy of the 

random classifiers that achieved similar or higher total accuracy compared to the observed accuracy 

of the RFE-RF model on the training data.  

 

Publically available datasets 

The following publically available datasets were used in this study: 

a) Karnoub et al. (GSE8977) (Karnoub et al., 2007): total of 22 samples coming from breast ductal 

carcinoma-in-situ (DCIS) patients (N = 15) and invasive ductal (IDC) breast cancer patients (N = 

7) were downloaded from GEO. Samples we processed and normalised using the robust Multi-

Array average expression measure (RMA) from the affy package in R. Probes representing the 

same gene were averaged to a single value. 

b) Finak et al. (GSE9014) (Finak et al., 2008): total of 59 samples coming from breast cancer stroma 

patients (N = 53) and healthy controls (N = 6) including updated clinical information were 

downloaded from GEO. Technical replicates were averaged to a single array using the 



averarrays() function from limma package in R. Data were then quantile normalised using the 

normalizeQuantiles() function. Samples were annotated and probes representing the same gene 

were averaged to a single value.  

c) METABRIC cohort (Curtis et al., 2012): Microarray gene expression data and associated clinical 

information (N = 1980) (Log2 transformed intensity values) were downloaded from the 

cBioPortal for cancer genomics database (http://www.cbioportal.org/) under the study name 

Breast cancer. Gene expression values were quantile normalized and samples with gene 

expression and corresponding clinical information were selected resulting in N = 1353 patients. 

Data were filtered for missing values and samples with molecular subtype NC were removed. The 

filtering resulted in N = 1350 patients that were used for further analysis. For survival analysis, 

events were censored based on disease-related deaths (Died of disease = 1; Living or Died of 

other causes = 0). 

d) Cancer cell Encyclopedia (CCLE) data: Gene expression RPKM normalized reads from breast 

cancer cell lines (N = 57) were downloaded from the CCLE website 

(https://portals.broadinstitute.org/ccle).  

 

TAM signature 

As a starting point for the selection of the immune signature we used the up-regulated genes in Br-

TAM compared to Br-RM (N = 553, Log2FC > 3 and FDR < 0.05). This gene list of highly 

differentially expressed genes was filtered using the compendium of immune genes that includes 17 

immune cell-specific gene sets as initially assembled by Bindea et al. and Charoentong et al. (Bindea 

et al., 2013; Charoentong et al., 2017) and most recently validated by Tamborero et al. (Tamborero et 

al., 2018) (File S1I). After filtering, N = 528 TAM related genes were selected. In order to identify 

the most relevant genes we used the METABRIC cohort and correlation analysis. Genes were 

considered coexpressed when having an absolute Pearson correlation of R >= 0.5 (findCorrelation() 

function from the caret package in R (Kuhn, 2015)). This threshold was selected in order to satisfy 

two main aims: a) genes with relatively high correlation would not be considered a chance event; b) 

selection of a relatively small number of genes in order to be suitable for gene set enrichment and 

survival analysis (Charoentong et al., 2017). Additionally, genes were selected based on their positive 

Pearson correlation (R > 0.5, p <= 0.05) with known TAM marker CD163, resulting in N = 37 genes 

(File S1J). Finally, we downloaded breast cancer cell line data from the CCLE database (N = 57 

breast cancer cell lines) in order to filter out genes expressed by tumor cells. Genes with median 

expression of Log2RPKM > 6 were considered expressed in tumor cells (TAM: median = 0.031). This 

resulted in a set of 37 genes expressed by TAMs and not tumor cells or other immune-specific 

signatures (File S1J). The TAM and macrophage signature scores were calculated as the median of 

http://www.cbioportal.org/
https://portals.broadinstitute.org/ccle


expression of the TAM or macrophage signature genes (Tamborero et al., 2018) using the median 

centered normalised values. 

 

Survival analysis 

For the TAM signature and SIGLEC1/CCL8 signature the summed normalised gene expression 

values were dichotomized based on the optimal cutoff calculated by iteratively calculating every 

possible expression cutoff (n-1) and selecting the value with the lowest p-value (Pearce et al., 2017). 

For the METABRIC cohort, disease-specific survival (DSS) was used as an endpoint. For the breast 

cancer stroma dataset, recurrence-free survival (RFS) was used as an endpoint and censored at date of 

last follow-up. Survival curves were estimated using the Kaplan Meier method (survival and 

survminer R packages). For SIGLEC1 and CCL8 single gene survival analysis, clinical risk factors 

such as ER status (positive or negative), PR status (positive or negative), HER2 status (positive or 

negative), histological grade (I,II or III), age (greater or less than 55) and tumor size (greater or less 

than 50mm) were used in the univariate and multivariate models. Candidate prognostic factors for 

RFS and DSS with a p-value (Wald test) lower than 0.05 in univariate analysis were used in the 

multivariate analysis. Multivariate analysis was performed by fitting a Cox proportional hazard 

regression model. The Cox regression model was used to calculate the Hazard ratio (HR) and 95% 

confidence internal (CI). A p-value less than 0.05 based on a Wald test was considered significant. 

 

RNA-seq of total tissue breast cancer 

RNA isolated from 47 breast cancer tumors (DUKE cohort) was utilized for RNA-seq. These RNA 

samples were converted into a library of cDNA fragments. Illumina sequencing adapters were added 

and 50 bp single end read sequence was obtained using Illumina HiSeq. Quality check was performed 

on these sequence reads using FastQC. PCR primers and adapters were filtered out of the sequence 

reads using Trimmomatic (Bolger et al., 2014). Filtered reads were aligned to reference genome build 

hg19 using TopHat 2.0.12, a splice junction aligner (Kim et al., 2013). Aligned sequences were 

assembled into transcripts. Transcript abundance was estimated as Fragments Per Kilobase of exon 

per Million fragments mapped (FPKM), using Cufflinks 2.2.1 (Roberts et al., 2011; Trapnell et al., 

2010). FPKM estimates were normalized using Cuffnorm. Further data was quartile normalized and 

batch effects were removed using ComBat (Johnson et al., 2007). Samples were classified into CSF1 

High, Mid and Low expression groups using K-means clustering on the expression of CSF1 signature 

genes (Beck et al., 2009). TAM signature score was estimated from the median of expression of TAM 

signature genes. Samples were assigned to breast cancer subtypes based on hierarchical clustering of 

PAM50 genes (Parker et al., 2009). Clustering was performed using R package pheatmap_1.0.8. 

Correlation was used as a distance measure and average was used as clustering method. 



 

Quantitative PCR 

Cells were lysed and RNA extracted with RNAeasy Microkit (Qiagen) according to manufacturer’s 

instructions. Typically, 0.1 ug of total RNA was reverse transcribed using Super Script Vilo kit 

(Invitrogen) and the cDNA generated was used for semi quantitative PCR on a 7900 Real Time cycler 

(Applied Biosystem) as per manufacturer’s instructions. Target gene expression was normalized to 

the expression of the housekeeping gene GAPDH. Relative gene expression was calculated using the 

standard 2-ΔΔCT method. Primers were designed using Primer Bank (Wang et al., 2012). The full 

list of primers used can be found in File S6A. 

 

Immunofluorescence and quantitation 

All tissues were fixed in 4% w/v paraformaldehyde, dehydrated and embedded in paraffin blocks; 5 

µm sections were cut onto positively charged glass slides and stained with the following antibodies: 

CD163 (Novocastra NCL-LCD163, Clone 10D6) dilution 1:1000, SIGLEC1 (Novus Biologicals, 

NPB2-309003, polyclonal) dilution 1:100. High throughput immunofluorescence was performed by 

the SURF Facility at the University of Edinburgh (http://surf.ed.ac.uk/facilities/immunodetection-and-

histological-imaging/) after primary antibody optimization. Immunofluorescently stained tissues were 

batch-scanned on a Zeiss AxioScan.Z1 (Carl Zeiss, Oberkochen, Germany) with specific scan profiles 

for each stain group and using a 40x Plan-Apochromat 0.95NA coverslip corrected air objective. Slide 

scanned images were imported into a Definiens Tissue Studio workspace (Definiens AG, Munich, 

Germany) and pre-processed for nuclear detection and cell simulation using built-in nuclear detection 

and cell growth algorithms. The pre-processed workspace was then imported into Definiens 

Developer XD (Definiens AG, Munich, Germany) for further processing, quality control, machine 

learning, and k-Nearest Neighbour classification and output compiled in Mathematica 10.3 (Wolfram 

Inc., Champaign, Illinois, United States) and tabulated in a spreadsheet (File S6B). Incomplete or 

low-quality nuclei and cells were discarded using a combination of DAPI pixel intensities and 

standard deviation. For CD163, examples of 300 cells each were given for positive and negative cases 

in a single large tissue sub-region of one cancer tissue previously identified to show the most variation 

of intensity. These class samples were used to optimize a feature space consisting of 49 subjectively 

selected morphological, textural, statistical, and intensity-based metrics. Feature space optimization 

indicated 19 features as being most important for separation of both populations using a Euclidean 

distance matrix. A classifier algorithm was used to compile these 19 metrics for each given class 

sample in each population and then used to classify all remaining cells in that tissue. A selection of at 

least 10 incorrectly classed cells were then manually corrected and added to the relevant class sample 

populations before recompiling the 19-dimensional feature space and reclassifying the whole tissue. 

http://surf.ed.ac.uk/facilities/immunodetection-and-histological-imaging/
http://surf.ed.ac.uk/facilities/immunodetection-and-histological-imaging/


This iterative learning process was repeated at least 10 times with a final sample size of 400-500 cells 

for each class. The classifier was stored as .xml and used to batch classify the entire data set of tissues 

from all patients. 

 

Multiplex immunohistochemistry 

Staining: Formalin-fixed paraffin embedded (FFPE) tissue samples (5 μm) were used for iterative 

multiplex immunohistochemistry as previously described (Tsujikawa et al., 2017). Briefly, following 

standard antigen retrieval and blocking, primary antibodies (listed in table below) were applied to 

tissue sections and incubated overnight at 4°C. Primary antibodies were detected using a species-

specific F(ab’) fragment-specific secondary antibody-labeled polymer-based peroxidase system 

(Histofine, Nichirei Biosciences Inc, Japan) in conjunction with 3-amino-9-ethylcarbazole (AEC). 

Images were acquired using Aperio ImageScope AT (Leica Biosystems) and slides were subject to 

iterative cycles of staining.  

 

Image processing and analysis: All image processing and analysis was performed as previously 

described (Tsujikawa et al., 2017) on three regions/slide, which encompassed the total tissue area. 

Image cytometry was performed using FCS Express 5 Image Cytometry (De Novo Software) and cell 

populations were determined using multiparameter cytometric image analysis (see gating schema). 

Cell populations were normalized to total cell number (Cells/Total Cells) and populations were 

quantified. Unsupervised hierarchical clustering was performed using R package pheatmap_1.0.8. 

Correlation was used as a distance measure and average was used as clustering method (Tsujikawa et 

al., 2017). 

 

Antibodies used for multiplex IHC 

Target Company/Product# Clone Dilution 

CD45 eBiosciences: 14-0459-82 H130 1:100 

CD3 ThermoFisher Scientific:MA1-90582 SP7 1:150 

CD8 ThermoFisher Scientific:MA5-13473 C8/144B 1:100 

CSF1R abcam: ab183316 SP211 1:150 

CD169 Millipore: MABT328 5F1.1 1:200 

CD163 ThermoFisher: MA5-11458 10D6 1:100 

CD56 Santa Cruz Biotech 123C3 1:100 

CCR2 Novus: MAB150-SP 48607 1:400 

 

 



Monocyte Derived Macrophages (MDM) isolation and stimulation 

Peripheral blood mononuclear cells (PBMC) were extracted after Ficoll gradient stratification and 

centrifugation as previously described (Cassetta et al., 2013). PBMC were seeded in a 12-well plate 

(NUNC-BD) at the concentration of 8x106 cells/ml for 2h at 37°C 5% v/v CO2 in serum free medium 

(Dulbecco’s Modified Eagle Medium, DMEM). Non-adherent cells were removed and wells washed 

twice with Phosphate Buffer Saline (PBS) and 2 ml of DMEM 10% v/v Fetal Bovine Serum, 5% v/v 

Human AB serum and 1% w/v penicillin/streptomycin were added to each well; 50% of the medium 

(1.0 ml) was replaced with fresh medium every 3 days. After 7 days of differentiation MDM were 

treated for 24h with MDA-MB-231 and MDA-MB-468 cancer cell derived supernatant (CM) as 

previously reported (Kitamura et al., 2015). After 24h all the supernatant was removed and used for 

quantitative real-time (qPCR) metastasis breast cancer array (see below), cells were washed twice 

with PBS and lysed with Trizol Reagent (Thermo Fisher) for RNA extraction; RNA was extracted 

using Trizol manufacturer’s protocol. RNA was converted to cDNA using Invitrogen Superscript Vilo 

cDNA synthesis kit and qPCR was performed using the protocol described above in the text. 

 

iPSC derived macrophages 

The SFCi55 iPSC line was generated in house and was confirmed to be pluripotent and have a normal 

karyotype (C.-T. Yang et al., 2017). The cells were maintained in StemPro medium prepared by 

supplementing DMEM/F12 + Glutamax (Invitrogen) with StemPro hESC supplement (Invitrogen), 

1.8% BSA (Invitrogen), 0.1 mM β-mercaptoethanol (Invitrogen) and 20 ng/ml human basic FGF 

(Invitrogen). Differentiation of iPSCs to macrophages was carried out as previously described 

(Lopez-Yrigoyen et al., 2018). When iPSC colonies covered approximately 80% of the culture surface, 

(Day 0), spent medium was removed and replaced with 1.0 ml StemPro supplemented with cytokine 

Mix 1 (50 ng/ml BMP4, 50 ng/ml VEGF, and 20 ng/ml SCF). Colonies were cut using the 

EZPassageTM tool, and gently dislodged with a Pasteur pipette. They were divided equally into two 

wells of an Ultra-Low Attachment 6-well plate (Corning), and 2 ml of fresh StemPro media with 

cytokine Mix 1. Cells were cultured in suspension until day 4 with a cytokine top up on Day 2, to 

make embryoid bodies (EBs). On Day 4, EBs were lifted and transferred to gelatin-coated tissue-

culture grade 6-well plates in X-VIVOTM 15 media (Lonza) supplemented with cytokine Mix 2 (100 

ng/ml CSF1, 25 ng/ml IL3, 2.0 mM Glutamax, 1% Penicillin/Streptomycin, 0.055 M β -

mercaptoethanol). 10 to 15 EBs were plated in each well. EBs were maintained in this medium for the 

remainder of the protocol, with spent medium being replaced with fresh medium every 3-4 days. 

After about 2-3 weeks, the EBs produced macrophage progenitors in the culture supernatant that were 

harvested and transferred to 10 cm2 bacteriological dishes in X-VIVOTM 15 medium supplemented 

with cytokine Mix 3 (100 ng/ml CSF1, 2.0 mM Glutamax, 1% v/v Penicillin/Streptomycin) and 



allowed to mature for 7 days into iPSC-derived macrophages (iPSC-DM). Macrophage progenitors 

were harvested every 4 days for approximately 2 months. 

 

THP-1 monocyte differentiation and cytokine stimulation 

Human THP-1 monocytes were maintained in culture medium (10% v/v Fetal Bovine Serum [FBS] 

Roswell Park Memorial Institute [RPMI] 1640 Medium) and incubated at 37°C in a 5% v/v CO2 

atmosphere. For monocyte-macrophage differentiation, cells were seeded in at a density of 2.5x105 

cells/ml on 12-well plates, or 5x105 cells/ml in 6-well plates and macrophage differentiation was 

initiated by exposing the cells to 5ng/ml phorbol-12-myristate-13-acetate (PMA) (Sigma-Aldrich, 

16561-29-8) in 10% v/v FBS culture medium at 37°C in a 5% v/v CO2 atmosphere for 24h. 

Subsequently, THP-1 derived macrophages were polarized using different combinations of IL-4, IL-

10, IL-13 and TGF-β (InvivoGen, USA) or using different pro-inflammatory cytokines including 

TNFα, IFNγ IL-1β, IL-6 and IL-12 (InvivoGen, USA). The cytokines doses were 20 ng/ml and LPS 

was used at 25 ng/ml. 

 

Cancer cell culture, conditioned medium production and cytokine stimulation 

MDA-MB-468 and THP1 cell lines were cultured in (RPMI1640 with 10% v/v serum (GIBCO, Life 

Technologies); MDA-MB-231 cells were cultured in DMEM with 10% v/v serum (GIBCO, Life 

Technologies). All cells were originally obtained from ATCC (Manassas, VA, USA) and 

subsequently maintained in our laboratory. All cell lines were frequently tested for mycoplasma 

contamination using a commercially available Mycoplasma detection kit (Myco alert kit, Lonza, 

USA), and all tested negative. To obtain MDA-MB-231 and -468 CMs cells were resuspended in 

culture medium, seeded at a density of 1x105 cells/ml in 2.5 ml culture medium on 6-well plates and 

cultured overnight at 37°C in a 5% v/v CO2 atmosphere. Subsequently, for CM exposure on PMA-

THP-1 monocytes, culture medium was replaced with 10% v/v FBS RPM1640 medium, for CM 

exposure on human monocyte-derived macrophages (MDMs), culture medium was replaced with 

10% v/v FBS DMEM supplemented with 5% v/v human serum and for CM exposure on human 

iPSDM culture medium was replaced with 10% v/v FBS DMEM. After medium change, cells were 

cultured for an additional 24h with fresh medium and thereafter, cell free supernatants were harvested 

and directly used for the experiment. 

 

CCL8 mRNA, SIGLEC1 and CD163 protein detection 

Staining was performed on a Leica RX research staining robot (Milton Keynes UK). RNAscope 

(ACD Bio Newark, CA) In situ hybridization was performed using manufacturer’s recommendations 



using ACD 2.5 Brown kit (322100). mRNA integrity was assessed using PPIB (cat 313908) on FFPE 

fixed Breast CA needle biopsies. Mild conditions (ER2 95 C 5mins) with protease (5 mins) were 

assessed as optimal tissue pre-treatments. Modification of standard protocol for CCL8 (466498) 

involved omitting DAB substrate and replacing with Tyramide Cy5 (Perkin Elmer, Waltham, 

Massachusetts). Sections were then sequentially stained for SIGLEC1 protein with Tyramide Cy3 

detection and CD163 with Tyramide FITC detection using heat elution between detections for 

specificity as described (Tóth and Mezey, 2007). 

 

ELISAs 

Human CCL8, TNF and IL1 protein levels were quantified by Duoset ELISA kits (RandD systems, 

USA) following manufacturer’s instructions. Human CSF1 protein levels were quantified by 

quantikine ELISA kit (RandD systems, USA). All cell culture supernatants were used undiluted. 

CCL2 levels were assessed in plasma from 15 healthy donors and 42 breast cancer patients using 

Legendplex bead-based immunoassays (Biolegend) according to manufacturer’s protocol. Data were 

collected using the C4 Accuri (BD). ELISA for human CX3CL1 was done using a human CX3CL1 

Quantikine ELISA kit (R&D Systems) as per manufacturer’s instructions. 

 

Cytokine array 

Human Cytokine ELISA Plate Array (Signosis, EA-4002), consisting of one pre-coated plate able to 

detect 32 cytokines simultaneously for 3 independent human samples was used to quantify cytokines 

in supernatants from MDMs before or after cancer CM stimulation. Detection of cytokines produced 

from MDMs before or after CM stimulation was performed based on the manufacturers instructions) 

(Sigma-Aldrich, 16561-29). 8.0 µl of MDM supernatants from each group was added into each well 

of the plate and incubated at room temperature for 2h. After washing, 100µl of diluted biotin-labeled 

antibody mixtures were added into each well for another one hour incubation. After washing again, 

each well was incubated with detection antibody mix and then HRP, and the plate was read on a plate 

reader at 450 nm. The full list of proteins detected and raw data can be found in File S4A. 

 

iPSDM-Cancer cell conditioned medium production 

Human iPSDM culture medium was replaced with 10% v/v FBS DMEM 24h before CM incubation. 

iPSDM were incubated with MDA-MB-231 and -468 CMs (prepared as described above) for 24h and 

then medium was changed; after medium change, cells were cultured for an additional 24h with fresh 

medium and thereafter, cell free supernatants were harvested and directly used for the experiment. 

 



TNFα neutralization in iPSDM-Cancer cell conditioned medium 

iPSDM-Cancer cell conditioned medium was incubated for 24h with 1.0 µg/ml of mouse anti human 

TNFα neutralizing antibody (RandDsystems, USA, MAB210-SP, Clone 1825) or 1.0 µg/ml ofmouse 

IgG1 isotype control (RandDsystems, USA, MAB002). Efficacy of anti-TNFα antibody neutralization 

was tested by TNFα ELISA before use.  

 

PCR Arrays 

PCR-based microarrays for evaluating the expression of genes mediating the inflammatory response 

were performed using the human inflammatory cytokines and receptors RT2 Profiler TM PCR array 

(Qiagen, PAHS-011ZE-4); PCR-based microarrays for evaluating the expression of genes in breast 

cancer cell lines were performed using the Breast cancer PCR array RT2 Profiler TM PCR array 

(Qiagen, PAHS-131Z-4) and the Tumor Metastasis PCR array RT2 Profiler TM PCR array (Qiagen, 

PAHS-028Z). The arrays were configured in a 384-well plate consisted of a panel of 92 genes and 4 

endogenous genes. Reverse transcription was performed using the RTC First Strand Kit (Qiagen, 

330401) and qPCR was performed using RTC SYBR Green/ROX PCR Master mix (Qiagen, 330521), 

and the raw data were analysed by the GeneGlobe Data Analysis Center (www.qiagen.com) 

according to the manufacturer’s instructions. 

 

Cell proliferation assay 

Cell proliferation was determined using the Cell Counting Kit (CCK)-8 assay (Sigma-Aldrich, 96992) 

according to the manufacturer's instructions. A total of 5,000 cells were seeded into each well in the 

96-well plates and allowed to attach overnight. Cells were then treated with 0.1 ng/ml, 1.0 ng/ml or 10 

ng/ml CCL8 (R&D Systems, 281-CP-010/CF). After the treatment (6 to 72 hours), a CCL8 solution 

was added to each well and then cells were incubated at 37°C for 2h. Cell proliferation was measured 

using the microplate reader and the proliferation of cells was defined as OD450-OD620. 

 

In vitro cell migration assay 

The “scratch” assay to assess cell migration was performed following previously published protocols 

(Liang et al., 2007). Cells were grown in DMEM with 10% v/v FBS in 12-well plates until they 

reached confluence; after 24h of starvation (DMEM 0% FBS), a scratch was performed using a p200 

eppendorf tip. Recombinant CCL8 and CCL2 were used at 1ng/ml concentrations in all the 

experiments. Cells were filmed for 24h in a 37°C thermostatic chamber using an Axiovert Scope. 2-3 

independent sections/well were filmed and 4 independent experiments per condition were 

performed.Data analysis was performed with Image J (NIH). 



 

Chemotaxis assay 

THP1 chemotaxis was performed using Essen Biosciences reagents. THP1 cells were cultivated in 

RPMI medium with 10% FBS and seeded at 4000 cells/well in 96 well chemotaxis plates in the 

presence or absence of 20 ng/ml recombinant human CCL2 or CCL8 (R and D systems). Migration 

was recorded every hour for 72h using the IncuCyte system (Essen Bioscience) and number of cells 

migrated was calculated using IncuCyte quantification software. 

 

Statistics 

Statistical significance was calculated by Student’s t-test when comparing two groups or by one-way 

or two-way ANOVA when comparing three or more groups. A p-value < 0.05 was considered as 

statistically significant. 

 

Accession numbers 

The transcriptome data reported in the paper have been deposited in the GEO database under 

accession numbers GSE100925 and GSE117970 (token to access data uvglgwuynvknxod).  

  

  



Main Figure Legends 

Figure 1. Cancer alters the transcriptome of human monocytes. 

A) Principal component analysis (PCA) plot of N = 12,157 genes expressed in monocytes from 

healthy individuals (Mo, N = 45) and TEMo from cancer patients (N = 35; Breast cancer = 32; 

Endometrial cancer = 3). B) Hierarchical clustering of all differentially expressed genes (DEGs) 

between Mo and TEMo. Expression values are Z score-transformed. Samples were clustered using 

complete linkage and Euclidean distance. C) Gene ontology analysis of DEGs between TEMo and 

Mo (blue = down-regulated genes, red for upregulated genes). D) Bar plot of selected DEGs in TEMo 

(FDR <= 0.05). E) Expression of CD200R1, TNFSF10, HGF and ANGPT1 mRNA in Mo and Breast 

TEMo (N = 3-5; independent from the RNA-seq cohort). Data are depicted as fold change versus 

control (Mean±SEM). F) Relative distribution of non-classical monocytes from healthy controls and 

breast and endometrial cancer patients determined by flow cytometry shown as percentage in the 

monocyte gate. Cohort 1: USA (Mo, N = 31, breast TEMo , N = 22, endometrial TEMo , N = 12); 

Cohort 2: UK Breast cancer and controls only (Mo, N = 18, TEMo, N = 33). G) Quantification of 

CX3CL1 and CCL2 in the sera of control (Ctr, N = 15) and breast cancer patients (Ca, N = 45). H) 

Differential expression of CX3CR1 and CCR2 in Mo (N = 10) and breast TEMo (N = 31). I) 

Confusion matrix and K) Table showing results of Recursive Feature Elimination with Random 

Forest (RFE-RF) classification on the testing set (N = 22) for breast TEMo. L) Receiver Operating 

Characteristic (ROC) curves of RFE-RF classification in the training and test set (green and blue, 

respectively). Monocytes were identified as in Figure S1 and then stained with CX3CR1 and CCR2 

Abs. Data are depicted as net GEO Mean. *p < 0.01, ***p < 0.0001; (E-H) Student’s t-test. See also 

Figure S1 and File S1. 

 

Figure 2. TAMs from breast and endometrial cancers exhibit cancer-specific transcriptional 

profiles. 

A) PCA plot of N = 13,668 genes expressed in breast tissue resident macrophages (Br-RM, N = 4) 

and breast cancer TAMs (Br-TAM, N = 4). B) Hierarchical clustering of all DEGs between Br-RM 

and Br-TAM. Expression values are Z score-transformed. Samples were clustered using complete 

linkage and Euclidean distance. C) Gene ontology analysis of DEGs between Br-TAM and Br-RM 

(blue = down-regulated genes, red for upregulated genes). D) Bar plot of selected DEGs in Br-TAM 

(FDR <= 0.05). E) Venn diagram of commonly regulated transcripts in Br-TAM and TEMo (Red: up-

regulation; Blue: down-regulation). F) PCA plot of N = 13,739 genes expressed in endometrial tissue 

resident macrophages (En-RM, N = 5) from healthy individuals and endometrial cancer TAMs (En-

TAM, N = 9). G) Hierarchical clustering of all DEGs between En-RM and En-TAM. Expression 

values are Z score-transformed. Samples were clustered using complete linkage and Euclidean 

distance. H) Gene ontology analysis of DEGs between En-TAM and En-RM (blue = down-regulated 



genes, red for upregulated genes).. I) Bar plot of selected DEGs in En-TAM (FDR <= 0.05). J) Venn 

diagram of commonly regulated transcripts between En-TAM and TEMo and K) En-TAM and Br-

TAM. (Red: up-regulation; Blue: down-regulation). L) TAM signature score stratified by the CSF1 

signature in the DUKE cohort (N = 47) and M) by PAM50 molecular subtypes in the METABRIC 

cohort (N = 1350). (Adjusted p-values: one-way ANOVA with Tukey’s post-hoc multiple 

comparisons test). N) Disease-specific survival of the TAM signature expression on the METABRIC 

cohort (N = 1350). ***p < 0.0001. See also S2, S3 and File S1. 

 

Figure 3. Breast TAM transcriptomes are associated with clinical outcomes and reveal new 

TAM-specific markers. 

A) Scatterplot showing Pearson’s correlation between CD163 and SIGLEC1 gene expression in the 

METABRIC cohort (N =1350). Red line indicates local regression (LOESS) fit. B) Disease-specific 

survival of SIGLEC1 gene expression on the METABRIC cohort (N = 1350). C) Expression of 

SIGLEC1 mRNA in BR-RM (N = 4) and Br-TAM (N = 6). D) SIGLEC1 expression on public 

datasets. (Left) Finak et al. (Finak et al., 2008) (p = 0.0002; Normal stroma, N = 6; Cancer stroma, N 

= 53). (Right) Karnoub et al. (Karnoub et al., 2007) (p = 2.3e-05; Normal stroma, N = 15; Cancer 

stroma, N = 7). SIGLEC1 expression was calculated from the median centered normalised values. P-

values were estimated using a Wilcoxon rank sum test. E) CD163 and SIGLEC1 immunofluorescent 

(IF) staining. (Left to right) SIGLEC1, DAPI, CD163, merged stains and inset (N=5). Independent 

stains from two different cancer samples (i, ii) are shown representative of N = 12 independent tumors 

analyzed. Scale bars = 50 μm and inset = 5μm. F) Quantification of CD163 (left panel), SIGLEC1 

(center panel), and CD163 and SIGLEC1 (right panel) positive cells per mm2 of tissue in benign (N = 

4) and breast cancer samples (N = 8) G) TNFα levels in supernatants of iPSDM incubated for 24h 

with PBS, PBS plus isotype control and PBS plus anti-TNFα antibody (grey bars). Same conditions 

are shown for MDA-MB-231 (pink bars) and MDA-MB-468 CM (blue bars) (N = 3). Results are 

expressed as pg/ml. H) Expression of TNFα mRNA in Br-RM (N = 4) and Br-TAM (N = 6). I) TNF

α protein levels in MDM supernatants incubated for 24h with MDA-MB-231 and MDA-MB-468 

conditioned medium (CM). Results are expressed as OD at 450nm (N = 3). The full list of proteins 

detected by the protein array can be found in File S4D. J) SIGLEC1 mRNA expression in iPSDM 

stimulated for 24h with MDA-MB-231 CM normalized as 1 (pink bar), MDA-MB-231 CM + TNFα 

neutralizing antibody (green bar) and MDA-MB-231 CM + isotype control antibody (magenta bar) (N 

= 3). K) SIGLEC1 mRNA expression in iPSDM stimulated for 24h with MDA-MB-468 CM 

normalized as 1 (blue bar), MDA-MB-468 CM + TNFα neutralizing antibody (green bar) and MDA-

MB-468 CM + isotype control antibody (magenta bar). (N = 3). *p < 0.01, **p <0.001, ***p < 0.0001, 

****p < 0.00001; (C, H) Student’s t-test, (F) Two-way ANOVA, (G, I-K) One-way ANOVA, (C, F-



K) Data on expression are presented as Mean±SEM, (C, H, J, K) Data are depicted as fold change vs 

control. See also S4, S5, S6 and File S4D. 

 

Figure 4. TAMs and cancer cells engage in cytokine feedback loops to support CCL8 and 

SIGLEC1 expression in breast cancer TAMs.  

A) Volcano plot showing genes whose expression was significantly (Log2FC +/- 2, p < 0.05) 

deregulated in PMA treated THP1 cells after incubation with MDA-MB-231 for 24h (N = 3), and B) 

after incubation with MDA-MB-468 for 24 h (N = 3). C) Venn diagram of commonly up-regulated 

transcripts between MDA-MB-231 (left circle) and MDA-MB-468 (right circle) treated THP1 cells. 

D) Selection of pro-inflammatory genes commonly up-regulated in Br-TAM (N = 4) (from RNA-seq 

analysis) and PMA-THP1 (N = 3) (qPCR). E) Scatterplot showing Pearson’s correlation between 

CD163 and CCL8 gene expression in the METABRIC cohort (N =1350). Red line indicates local 

regression (LOESS) fit. F) Disease-specific survival of CCL8 expression on the METABRIC cohort 

(N = 1350). G) CCL8 mRNA expression in Br-RM (N = 4) and Br-TAM (N = 7). H) CCL8 levels in 

CM from MDA-MB-231, MDA-MB-468, MDM, and MDM incubated for 24h with the two cancer 

cell CM respectively. Data are depicted as pg/ml (N = 3). I) FISH for CCL8 mRNA. Samples were 

processed using IF and FISH for (i) CCL8 or (ii) a DapB negative control probe. Depicted are 100x 

maximum-projected confocal as follows (left to right): SIGLEC1 (red), DAPI (blue), CD163 (green), 

CCL8 mRNA (white), overlay, magnified inset, and magnified orthogonal planes. All scale bars are 

10m. Upper panel: stained cancer sample, lower panel: negative control (N = 3). CCL8 mRNA 

expression in iPSDM stimulated for 24h with J) MDA-MB-231 CM normalized as 1, MDA-MB-231 

CM + TNFα neutralizing antibody and MDA-MB-231 CM + isotype control antibody, K) MDA-

MB-468 CM normalized as 1, MDA-MB-468 CM + TNFα neutralizing and MDA-MB-468 CM + 

isotype control antibody (N = 3, each). L) CSF1 levels and M) TNFα and IL1β levels in supernatants 

from unstimulated MDA-MB-231 (CTR), and MDA-MB-231 incubated for 24h with 10 or 20ng/ml 

(or 20ng/ml for CSF1) of rCCL8. Unstimulated MDA-MB-468 (CTR), and MDA-MB-468 incubated 

for 24h with 10 or 20ng/ml (or 20ng/ml for CSF1) of rCCL8. Data are depicted as pg/ml (N = 3 for 

each). N) In vitro scratch assay on MDA-MB-231, (left) on untreated CCL8, and (right) CCL2 treated 

cells (upper panel 1h, lower panel 24h time points, red line = cell culture margins N = 4). O) 

Quantification of in vitro scratch assay covered by MDA-MB-231 after 24h (calculated as area 

covered at 24h –1h) in untreated (CTR), CCL8- and CCL2- treated cells. Same symbols represent 

Mean of technical replicates (N = 4). P) THP1 chemotaxis assay for CCL2 and CCL8. Cells were 

incubated with medium alone (CTR) or with 20ng/ml of rhCCL2 or rhCCL8. Results shown as fold 

change vs CTR at 72h (N = 3). *p < 0.01, **p < 0.001, ***p < 0.0001; (G) Student’s t-test, (H, J-M, 

O) One-way ANOVA, (G, H, J, K, M, O) Data on expression are presented as Mean±SEM, (G, J, K) 

Data are depicted as fold change vs control. See also S7, S8 and S9. 



 

Figure 5. High expression of SIGLEC1/CCL8 is associated with poor outcomes in breast cancer 

patients. Heatmap and disease-specific survival of SIGLEC1 and CCL8 gene expression on A) the 

breast cancer stroma dataset (Finak et al., 2008), B) the METABRIC cohort and C) the ER+/HER2- 

patients from the METABRIC cohort. All significant cut-points (p < 0.05) are shown in black. Black 

vertical lines indicate positivity for ER and HER2 expression or grade III tumours. 

 

Figure 6. Schematic representation of the crosstalk between Br-TAM and cancer cells. Tumor 

cells up-regulate SIGLEC1, TNFα and CCL8 expression in Br-TAM. In turn cancer cells respond to 

CCL8 stimulation by producing CSF-1, IL1β and TNFα, which further contribute to the positive 

feedback loop. 

 

Supplementary Figure Legends 

Figure S1, related to Figure 1. Flow cytometry gating strategy for the identification and 

isolation of human monocytes and transcriptomic analysis of the non-classical sub-population. 

A) Representative monocyte gating strategy based on physical and fluorescence parameters 

Validation of gating strategy was performed by B) backgating and nuclei coloration (Giemsa, 

staining). 

C) Representative monocyte gating strategy based on physical, and fluorescence parameters Classical 

and non-classical monocytes separation in D) healthy controls and E) cancer patients. 

F) PCA plot of N = 12,712 genes expressed in non-classical monocytes derived from healthy 

individuals (N = 6), breast cancer (N = 6) and endometrial cancer patients (N = 7). 

G) Hierarchical clustering on all samples (Healthy, N=5; Breast cancer, N=6; Endometrial cancer, N 

= 7) using the significantly DEGs between breast and healthy non-classical monocytes (N = 139 

genes). Expression values are Z score-transformed. Samples were clustered using complete linkage 

and Euclidean distance. 

H) Plot of the accuracy yielded for different gene sizes during feature selection with Recursive feature 

elimination with Random forest (RFE-RF) model training using a 5 times 10-fold cross validation. X-

axis shows the number of genes and y-axis their accuracy. 17 genes showed the best performance. 

I) Histogram showing the performance of random classifiers during Random forest (RF) model 

training. Random classifiers were tested using a 5 times 10-fold cross validation. Solid vertical red 

line represents the performance of the observed 17-gene signature on the training data. 

 

Figure S2, related to Figure 2. Flow cytometry sorting strategy of tissue macrophages and 

TAMs, and analysis of CD163 expression and distinct macrophage populations. 



A) Gating strategy for tissue macrophages and TAMs; macrophages were defined as 

CD45+CD3/56/19-CD11b+CD14+CD163+.  

B) Representative histogram of macrophage CD163 expression; black = CD163 staining, light grey = 

Fluorescence minus one (FMO) control. CD163 expression in Br-MR (N = 5) compared to Br-TAM 

(N = 5). Data are expressed as Geometric Mean (Mean±SEM).  

C) (Left) PCA plot of  N = 14,229 expressed genes in Br-TAM (N = 4) and En-TAM (N = 9). (Right) 

Hierarchical clustering of all DEGs between Br-TAM and En-TAM. Expression values are Z score-

transformed. Samples were clustered using complete linkage and Euclidean distance. 

D) (Left) PCA plot of N = 13,907 expressed genes in Br-RM (N = 4) and En-RM (N = 5). (Right) 

Hierarchical clustering of all DEGs between Br-RM against En-RM. Expression values are Z score-

transformed. Samples were clustered using complete linkage and Euclidean distance. 

E) (Top to Bottom) Enrichment analysis of M1-like macrophage signature in Br-TAM: Plot suggests 

that M1-like genes (Martinez et al., 2006) to be positively (NES = 2.16) and significantly correlated 

(FDR = 0.003) (left peak) with Br-TAM expression. Black bars represent the position of M1-like 

genes in the ranked list of Br-TAM expressed genes together with the running enrichment score 

(green line). Enrichment analysis of M2-like macrophage signature in Br-TAM: Plot suggests that 

M2-like genes to be positively (NES = 2.22) and significantly correlated (FDR = 0.003) (left peak) 

with Br-TAM expression. Black bars represent the position of M2-like genes in the ranked list of Br-

TAM expressed genes together with the running enrichment score (green line).  

F) (Left to right) Enrichment analysis of M1-like macrophage signature in En-TAM: Plot suggests 

that M1-like genes (Martinez et al., 2006) to be negatively (NES = -1.63) but not significantly 

correlated (FDR = 0.10) (right peak) with En-TAM expression. Black bars represent the position of 

M1-like genes in the ranked list of En-TAM expressed genes together with the running enrichment 

score (green line). Enrichment analysis of M2-like macrophage signature on En-TAM: Plot suggests 

that M2-like genes to be to be negatively (NES = -1.32) but not significantly correlated (FDR = 0.17) 

with En-TAM expression. Black bars represent the position of M2-like genes in the ranked list of En-

TAM expressed genes together with the running enrichment score (green line). 

 

Figure S3, related to Figure 2. Breast cancer TAM signature is associated with aggressive breast 

cancer molecular subtypes in the DUKE cohort. 

A) TAM signature score across breast cancer subtypes in the DUKE cohort. TAM signature score is 

calculated as the median of expression of the TAM signature (N = 37) using the median centered 

normalised FPKM values. Adjusted p-values were estimated using one-way ANOVA with Tukey’s 

post-hoc multiple comparisons test. 

B) Hierarchical clustering of the TAM signature on the DUKE cohort tumor samples (N = 47). 

Expression values of TAM signature were median centered; genes were clustered using average 

distance and Pearson correlation.  



C) The previously identified macrophage immune signature (Bindea et al., 2013; Tamborero et al., 

2018) stratified by PAM50 molecular subtypes in the METABRIC cohort. The macrophage signature 

score was calculated as the median of expression of the macrophage immune signature (N = 29 out of 

33 genes were found) using the median centered normalised values. Adjusted p-values were estimated 

using one-way ANOVA with Tukey’s post-hoc multiple comparisons test. 

D) Disease-specific survuval of macrophage immune signature expression on the METABRIC cohort 

(N = 1350). P-values are based on Wald test. 

*p < 0.05, ***p < 0.00001. 

 

Figure S4, related to Figure 3. Expression of SIGLEC1 in Br-TAM and other immune cell types. 

A) SIGLEC1 expression in 4 independent biological replicate Br-TAM samples (macrophages gated 

as in Figure S2); (upper panel) FMO controls, (lower panel) SIGLEC1 staining.  

B) GEO Mean of SIGLEC1 expression in Br-TAM (white bar) and in FMO controls (black bar).  

C) SIGLEC1 expression in CD3/19/56 positive cells from breast tumors; (upper panel) FMO controls, 

(lower panel) SIGLEC1 staining.  

D) GEO Mean of SIGLEC1 expression in CD3/19/56 positive cells from breast tumors and in FMO 

controls. 

E) SIGLEC1 expression in 4 independent breast tumor samples (CD45-): (upper panel) FMO controls, 

(lower panel) SIGLEC1 staining.  

F) GEO Mean of SIGLEC1 expression in CD45- cells from breast tumors and in FMO controls.  

G) Quantification of % of SIGLEC1 positive cells in Br-TAM (N = 3). CD3/19/56 positive cells and 

CD45- cells from breast tumors. Data are depicted as % of SIGLEC1 positive cells (Mean±SEM), 

H) GEO Mean values of SIGLEC1 expression in Br-TAM (N = 4). CD3/19/56 positive cells and 

CD45- cells from breast tumors. Data are depicted as GEO Mean (Mean±SEM) 

I) Representative SIGLEC1 cell surface expression in classical and non-classical Mo and breast 

cancer TEMo (monocytes gated as in Figure S1), square gate based on FMO control.  

K) Quantification of % of SIGLEC1 positive cells in Mo and TEM (N = 3). Data are depicted as % of 

SIGLEC1 positive cells (Mean±SEM). 

L) Representative SIGLEC1 cell surface expression in breast cancer granulocytes (gated on live 

CD45+ SSC high cells,), square gate based on FMO control. 

M) Quantification of % of SIGLEC1 positive cells in granulocytes from normal patients (CTR) and 

breast cancer patients (N = 3, Mean±SEM). 

*p < 0.01, **p < 0.001; (G,H) One-way ANOVA, (K,M) Student’s t-test. 

 

Figure S5, related to Figure 3. Flow diagram showing the acquisition and analysis pipeline for 

cell quantification of immunofluorescently stained breast cancer tissues. 



A) Images of 40x-scanned slides were processed in Tissue Studio for nuclear detection and cell 

simulation. Nuclear/cell quality control and manual sampling of cell classes were conducted in 

Developer XD and a 19-dimensional feature space optimized from 49 metrics and ranked by 

importance to Euclidean distance separation. Initial classification of tissues was refined 10 or more 

times using cycles of classification-correction-reclassification. This process was repeated for 

additional channels, then entire batches of scanned slides processed together and cell classification 

data exported. Final extraction, compilation, and statistics of cell numbers were conducted using 

Mathematica and GraphPad Prism as described in materials and methods.  

B) Additional CD163 and SIGLEC1 immunofluorescent staining on breast cancer tissue samples. 

Tissue biopsies were stained for SIGLEC1, CD163 and DAPI. (Left to right) SIGLEC1, DAPI, 

CD163, merged stains and inset; 60X magnification. Breast cancer and benign (N = 5 each, Bars = 50 

μm). Shown 5 cancers and one benign control. 

 

Figure S6. Multiplex immunohistochemistry analysis of different breast cancer subtypes. 

A) Tissue biopsies from 13 breast cancer patients and three prophylactic mastectomy/mammoplasty 

(PM) procedures were assessed using quantitative multiplex immunohistochemistry. Cumulative cell 

populations (indicted on right) from total tissue areas were normalized to total cell number.  

B) Representative micrographs reflecting pseudo-colored images following multiplex IHC of cell 

populations across breast cancer subtypes as indicated. Boxed insets are depicted at higher 

magnification in corresponding columns. Scale bars as indicated.  

C) A heatmap of each cell population as a percent of total cells is shown with a dendrogram of 

unsupervised hierarchical clustering, scaled by row and using correlation as a distance measure, and 

average as a clustering method. Each column represents an independent tumor according to sub-type. 

(Lum: luminal) and prophylactic mastectomy/mammoplasty (PM) samples. 

 

Figure S7, related to Figure 4. Expression of SIGLEC1 and CCL8 in macrophages after 

stimulation with cancer cell conditioned medium or cytokines.  

A) SIGLEC1 mRNA expression in primary MDM stimulated for 24h with PBS (black bar) 

normalized as 1, MDA-MB-231 conditioned medium (CM) (red bar) or MDA-MB-468 CM (blue bar). 

Data are depicted as fold change vs CTR (N = 3, Mean±SEM).  

B) SIGLEC1 mRNA expression in PMA-treated THP1 cells stimulated for 24h with PBS (black bar) 

normalized as 1, MDA-MB-231 CM (red bar) or MDA-MB-468 CM (blue bar). Data are depicted as 

fold change vs CTR (N = 3, Mean±SEM). 

C) Flow cytometric analysis of SIGLEC1 expression in iPSDM cells stimulated with MDA-MB-231 

CM. (Left panel) representative histogram showing SIGLEC1 expression levels in unstained (grey 

histogram), PBS (black histogram) and MDA-MB-231 CM treated samples (red histogram). (Right 



panel) SIGLEC1 expression (Geometric mean expressed as fold change vs CTR) in PBS (black bar) 

and MDA-MB-231 CM treated samples (red bar). (N = 3, Mean±SEM).  

D) Flow cytometric analysis of SIGLEC1 expression in iPSDM cells stimulated with MDA-MB-468 

CM. (Left panel) representative histogram showing SIGLEC1 expression levels in unstained (grey 

histogram), PBS (black histogram) and MDA-MB-468 CM treated samples (blue histogram). (Right 

panel) SIGLEC1 expression (Geometric mean expressed as fold change vs CTR) in PBS (black bar) 

and MDA-MB-468 CM treated samples (blue bar). (N = 3, Mean±SEM). 

E) SIGLEC1 mRNA expression in PMA-treated THP1 cells stimulated for times shown with pro-

inflammatory cytokines as indicated. LPS acts as a positive pro-inflammatory signal control. Red bar 

indicates SIGLEC1 expression in treated samples, dotted black line indicates SIGLEC1 expression in 

control PBS-treated samples. Data are depicted as fold change vs CTR (N = 3). 

F) SIGLEC1 mRNA expression in PMA-treated THP1 cells stimulated for times shown with anti-

inflammatory cytokines as indicated. Blue bar indicates SIGLEC1 expression in cytokine-treated 

samples, dotted black line indicates SIGLEC1 expression in PBS-treated samples. Data are depicted 

as fold change vs CTR (N = 3). 

G) CCL8 mRNA expression in PMA-treated THP1 cells stimulated for 24h with PBS (CTR; black 

bar), MDA-MB-231 CM (red bar) or MDA-MB-468 CM (blue bar). Data are depicted as fold change 

vs CTR (N = 3, Mean±SEM). 

H) CCL8 mRNA expression in primary MDM stimulated for 24h with PBS (CTR; black bar), MDA-

MB-231 CM (red bar) or MDA-MB-468 CM (blue bar). Data are depicted as fold change vs CTR (N 

= 3 Mean±SEM).  

I) CCL8 mRNA expression in iPSDM stimulated for 24h with PBS (CTR; black bar), MDA-MB-231 

CM (red bar) or MDA-MB-468 CM (blue bar). Data are depicted as fold change vs CTR (N = 3, 

Mean±SEM). 

J) ELISA for CCL8 in serum of healthy donors (black circles, N = 21) and breast cancer patients 

(orange squares, N = 38). Data are depicted as pg/ml (Mean±SEM). 

K) CCL8 mRNA expression in PMA-treated THP1 cells stimulated for times shown with pro-

inflammatory cytokines as shown. Red line cytokine-treated samples, dotted black line PBS-treated 

samples; Data are depicted as fold change vs CTR (N = 3, Mean±SEM).  

L) CCL8 mRNA expression in PMA-treated THP1 cells stimulated for times shown with anti-

inflammatory cytokines as indicated. Blue bar cytokine-treated samples, dotted black line PBS-treated 

samples. Data are depicted as fold change vs CTR (N = 3, Mean±SEM).  

*p < 0.01, **p < 0.001, ***p<0.0001, ****p<0.00001; (A, B, G-I) One-way ANOVA, (C-F, K, L) 

Student’s t-test. 

 

Figure S8, related to Figure 4. Cancer cell line expression of CCL8 Receptors. 



A) Representative histograms of CCR1 (blue), CCR2 (red), CCR3 (green), CCR5 (light blue) and 

CCR8 (gold) expression in MDA-MB-231 (upper panel) and 468 (lower panel) cells. Grey histograms 

indicate unstained samples.  

B) Percentage of CCR1 (blue), CCR2 (red), CCR3 (green), CCR5 (light blue) and CCR8 (gold) 

positive cells in total MDA-MB-231 (left panel) and MDA-MB -468 cells (right panel). 

C) MDA-MB-231 (left panel) and MDA-MB-468 (right panel) proliferation assay in the presence of 

PBS (No treatment; black line), 0.1ng/ml (red line), 1ng/ml (blue line) and 10ng/ml (green line) of 

CCL8 from 0-80h. No statistical differences between treatments and controls (N = 3, Mean±SEM). 

 

Figure S9, related to Figure 4. Breast cancer qPCR array on cancer cells stimulated with 

rCCL8 and macrophage conditioned medium. 

A) Volcano plot showing genes whose expression is significantly (Log2FC +/- 2, p < 0.05) down-

regulated (blue dots) and up-regulated (orange dots) in MDA-MB-231 cells after incubation with 

1ng/ml of rCCL8 for 16h (N = 3).  

B) Volcano plot showing genes whose expression is significantly (Log2FC +/- 2, p < 0.05) down-

regulated (blue dots) and up-regulated (orange dots) in MDA-MB-468 cells after incubation with 

1ng/ml of rCCL8 for 16h (N = 3).  

C) Venn diagram of commonly up-regulated genes between MDA-MB-231 (left circle) and MDA-

MB-468 (right circle) after rCCL8 treatment. Expression of 6 genes was commonly up-regulated.  

D) mRNA expression of 6 commonly up-regulated genes in MDA-MB-231 or MDA-MB-468 after 

CCL8 stimulation; dotted black line represents normalized expression level in untreated control 

samples. Data are depicted as fold change vs CTR (N = 3, Mean±SEM). 

E) Volcano plot showing genes whose expression is significantly (Log2FC +/- 2, p < 0.05) down-

regulated (blue dots) and up-regulated (orange dots) in MDA-MB-231 cells after incubation with 

condition medium (CM) primed MDM supernatant for 16h (N = 3).  

F) Volcano plot showing genes whose expression is significantly (Log2FC +/- 2, p < 0.05) down-

regulated (blue dots) and up-regulated (orange dots) in MDA-MB-468 cells after incubation with CM 

primed MDM supernatant for 16h (N = 3). 

G) Venn diagram of commonly upregulated genes between MDA-MB-231 (left circle) and MDA-

MB-468 (right circle). Expression of 16 genes was commonly upregulated in the two conditions. 

H) mRNA expression of 16 commonly upregulated genes in MDA-MB-231 (light grey bar) or MDA-

MB-468 (dark grey bar) after CM primed MDM supernatant stimulation; dotted black line represents 

normalized expression level in untreated control samples (N = 3, Mean±SEM).  

*p < 0.01, **p < 0.001, ***p<0.0001, *****p<0.000001; (D, H) Student’s t-test.  
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