109 research outputs found

    Socio-demographic factors associated with smoking and smoking cessation among 426,344 pregnant women in New South Wales, Australia

    Get PDF
    BACKGROUND: This study explores the socio-demographic characteristics of pregnant women who continue to smoke during the pregnancy, and identifies the characteristics of the smokers who were likely to quit smoking during the pregnancy period. METHODS: This was secondary analysis of the New South Wales (NSW) Midwives Data Collection (MDC) 1999–2003, a surveillance system covering all births in NSW public and private hospitals, as well as home births. Bivariate and multiple logistic regression analyses were performed to explore the associations between socio-demographic characteristics and smoking behaviour during pregnancy. RESULTS: Data from 426,344 pregnant women in NSW showed that 17.0% continued to smoke during pregnancy. The smoking rate was higher among teenage mothers, those with an Aboriginal (indigenous) background, and lower among more affluent and overseas-born mothers. This study also found that unbooked confinements, and lack of antenatal care in the first trimester were strongly associated with increased risk of smoking during pregnancy. About 4.0% of the smoking women reported they may quit smoking during their pregnancy. Findings showed that mothers born overseas, of higher socio-economic status, first time mothers and those who attended antenatal care early showed an increased likelihood of smoking cessation during pregnancy. Those who were heavy smokers were less likely to quit during pregnancy. CONCLUSION: Although the prevalence of smoking during pregnancy has been declining, it remains a significant public health concern. Smoking cessation programs should target the population subgroups of women at highest risk of smoking and who are least likely to quit. Effective antismoking interventions could reduce the obstetric and perinatal complications of smoking in pregnancy

    Association of nutritional status and serum albumin levels with development of toxicity in patients with advanced non-small cell lung cancer treated with paclitaxel-cisplatin chemotherapy: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A frequent manifestation of advanced NSCLC is malnutrition, even though there are many studies which relate it with a poor survival, its relation with toxicity has not yet been consistently reported. The aim of this study was to associate malnutrition and albumin serum levels with the occurrence of chemotherapy-induced toxicity in cisplatin plus paclitaxel chemotherapy-treated NSCLC.</p> <p>Methods</p> <p>We prospectively evaluated 100 stage IV NSCLC patients treated with paclitaxel (175 mg/m<sup>2</sup>) and cisplatin (80 mg/m<sup>2</sup>). Malnutrition was assessed using SGA prior treatment. Neutrophil Lymphocyte Ratio (NLR) and the Platelet Lymphocyte Ratio (PLR) were used to determine the presence of systemic inflammatory response (SIR) and were related to the development of toxicity. Toxicity was graded according to NCI CTCAE version 3.0 after two chemotherapy cycles.</p> <p>Results</p> <p>Median age was 58 ± 10 years, 51% of patients were malnourished, 50% had albumin ≤3.0 mg/mL. NLR ≥ 5 was associated with basal hypoalbuminemia (mean ranks, 55.7 vs. 39 p = 0.006), ECOG = 2 (47.2 vs. 55.4 p = 0.026) and PLR ≥ 150 were significantly related with a basal body mass index ≤20 (56.6 vs. 43.5; p = 0.02) and hypoalbuminemia (58.9 vs. 41.3; p = 0.02). Main toxicities observed after 2 cycles of chemotherapy were alopecia (84%), nausea (49%), neuropathy (46%), anemia (33%), lymphopenia (31%), and leukopenia (30%). Patients malnourished and with hypoalbuminemia developed more chemotherapy-induced toxicity overall when compared with those without malnutrition (31 vs 22; <it>p </it>= 0.02) and normal albumin (mean ranks, 62 vs 43; <it>p </it>= 0.002), respectively. Hypoalbuminemia was associated with anemia (56 vs 47; <it>p </it>= 0.05), fatigue (58 vs 46; <it>p </it>= 0.01), and appetite loss (57.1 vs 46.7; <it>p </it>= 0.004) compared with normal albumin. PLR ≥ 150 was related with the development of toxicity grade III/IV (59.27 vs. 47.03 p = 0.008) and anemia (37.9 vs 53.8 p = 0.004).</p> <p>Conclusion</p> <p>SIR parameters were associated with malnutrition, weight loss and hypoalbuminemia. Chemotherapy-induced toxicity in NSCLC patients treated with paclitaxel and cisplatin was associated with malnutrition and hypoalbuminemia. Early nutritional assessment and support might confer beneficial effects.</p

    Ligand-Induced Movements of Inner Transmembrane Helices of Glut1 Revealed by Chemical Cross-Linking of Di-Cysteine Mutants

    Get PDF
    The relative orientation and proximity of the pseudo-symmetrical inner transmembrane helical pairs 5/8 and 2/11 of Glut1 were analyzed by chemical cross-linking of di-cysteine mutants. Thirteen functional di-cysteine mutants were created from a C-less Glut1 reporter construct containing cysteine substitutions in helices 5 and 8 or helices 2 and 11. The mutants were expressed in Xenopus oocytes and the sensitivity of each mutant to intramolecular cross-linking by two homobifunctional thiol-specific reagents was ascertained by protease cleavage followed by immunoblot analysis. Five of 9 mutants with cysteine residues predicted to lie in close proximity to each other were susceptible to cross-linking by one or both reagents. None of 4 mutants with cysteine substitutions predicted to lie on opposite faces of their respective helices was susceptible to cross-linking. Additionally, the cross-linking of a di-cysteine pair (A70C/M420C, helices 2/11) predicted to lie near the exoplasmic face of the membrane was stimulated by ethylidene glucose, a non-transported glucose analog that preferentially binds to the exofacial substrate-binding site, suggesting that the binding of this ligand stimulates the closure of helices at the exoplasmic face of the membrane. In contrast, the cross-linking of a second di-cysteine pair (T158C/L325, helices 5/8), predicted to lie near the cytoplasmic face of the membrane, was stimulated by cytochalasin B, a glucose transport inhibitor that competitively inhibits substrate efflux, suggesting that this compound recruits the transporter to a conformational state in which closure of inner helices occurs at the cytoplasmic face of the membrane. This observation provides a structural explanation for the competitive inhibition of substrate efflux by cytochalasin B. These data indicate that the binding of competitive inhibitors of glucose efflux or influx induce occluded states in the transporter in which substrate is excluded from the exofacial or endofacial binding site

    A Survey of Avian Influenza in Tree Sparrows in China in 2011

    Get PDF
    Tree sparrows (Passer montanus) are widely distributed in all seasons in many countries. In this study, a survey and relevant experiments on avian influenza (AI) in tree sparrows were conducted. The results suggested that the receptor for avian influenza viruses (AIVs), SAα2,3Gal, is abundant in the respiratory tract of tree sparrows, and most of the tree sparrows infected experimentally with two H5 subtype highly pathogenic avian influenza (HPAI) viruses died within five days after inoculation. Furthermore, no AIVs were isolated from the rectum eluate of 1300 tree sparrows, but 94 serological positives of AI were found in 800 tree sparrows. The serological positives were more prevalent for H5 subtype HPAI (94/800) than for H7 subtype AI (0/800), more prevalent for clade 2.3.2.1 H5 subtype HPAI (89/800) than for clade 2.3.4 (1/800) and clade 7.2 (4/800) H5 subtype HPAI, more prevalent for clade 2.3.2.1 H5 subtype HPAI in a city in southern China (82/800) than in a city in northern China (8/800). The serological data are all consistent with the distribution of the subtypes or clades of AI in poultry in China. Previously, sparrows or other passerine birds were often found to be pathogenically negative for AIVs, except when an AIV was circulating in the local poultry, or the tested passerine birds were from a region near waterfowl-rich bodies of water. Taken together, the data suggest that tree sparrows are susceptible to infection of AIVs, and surveys targeting sparrows can provide good serological data about the circulation of AIVs in relevant regions

    Thermal Transport in Micro- and Nanoscale Systems

    Get PDF
    Small-scale (micro-/nanoscale) heat transfer has broad and exciting range of applications. Heat transfer at small scale quite naturally is influenced – sometimes dramatically – with high surface area-to-volume ratios. This in effect means that heat transfer in small-scale devices and systems is influenced by surface treatment and surface morphology. Importantly, interfacial dynamic effects are at least non-negligible, and there is a strong potential to engineer the performance of such devices using the progress in micro- and nanomanufacturing technologies. With this motivation, the emphasis here is on heat conduction and convection. The chapter starts with a broad introduction to Boltzmann transport equation which captures the physics of small-scale heat transport, while also outlining the differences between small-scale transport and classical macroscale heat transport. Among applications, examples are thermoelectric and thermal interface materials where micro- and nanofabrication have led to impressive figure of merits and thermal management performance. Basic of phonon transport and its manipulation through nanostructuring materials are discussed in detail. Small-scale single-phase convection and the crucial role it has played in developing the thermal management solutions for the next generation of electronics and energy-harvesting devices are discussed as the next topic. Features of microcooling platforms and physics of optimized thermal transport using microchannel manifold heat sinks are discussed in detail along with a discussion of how such systems also facilitate use of low-grade, waste heat from data centers and photovoltaic modules. Phase change process and their control using surface micro-/nanostructure are discussed next. Among the feature considered, the first are microscale heat pipes where capillary effects play an important role. Next the role of nanostructures in controlling nucleation and mobility of the discrete phase in two-phase processes, such as boiling, condensation, and icing is explained in great detail. Special emphasis is placed on the limitations of current surface and device manufacture technologies while also outlining the potential ways to overcome them. Lastly, the chapter is concluded with a summary and perspective on future trends and, more importantly, the opportunities for new research and applications in this exciting field

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore