28 research outputs found

    Morphology and tectonics of the Mid-Atlantic Ridge, 7°–12°S

    No full text
    We present swath bathymetric, gravity, and magnetic data from the Mid-Atlantic Ridge between the Ascension and the Bode Verde fracture zones, where significant ridge–hot spot interaction has been inferred. The ridge axis in this region may be divided into four segments. The central two segments exhibit rifted axial highs, while the northernmost and southernmost segments have deep rift valleys typical of slow-spreading mid-ocean ridges. Bathymetric and magnetic data indicate that both central segments have experienced ridge jumps since ~1 Ma. Mantle Bouguer anomalies (MBAs) derived from shipboard free air gravity and swath bathymetric data show deep subcircular lows centered on the new ridge axes, suggesting that mantle flow has been established beneath the new spreading centers for at least ~1 Myr. Inversion of gravity data indicates that crustal thicknesses vary by ~4 km along axis, with the thickest crust occurring beneath a large axial volcanic edifice. Once the effects of lithospheric aging have been removed, a model in which gravity variations are attributed entirely to crustal thickness variations is more consistent with data from an axis-parallel seismic line than a model that includes additional along-axis variations in mantle temperature. Both geophysical and geochemical data from the region may be explained by the melting of small (<200 km) mantle chemical heterogeneities rather than elevated temperatures. Therefore, there may be no Ascension/Circe plume

    Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5- 38.0°S): Constraints on Mantle Wedge and Input Compositions

    Get PDF
    Crustal assimilation (e.g. Hildreth and Moorbath, 1988) and/or subduction erosion (e.g. Stern, 1991; Kay et al., 2005) are believed to control the geochemical variations along the northern portion of the Chilean Southern Volcanic Zone. In order to evaluate these hypotheses, we present a comprehensive geochemical data set (major and trace elements and O-Sr-Nd-Hf-Pb isotopes) from Holocene primarily olivine-bearing volcanic rocks across the arc between 34.5-38.0°S, including volcanic front centers from Tinguiririca to Callaqui, the rear arc centers of Infernillo Volcanic Field, Laguna del Maule and Copahue, and extending 300 km into the backarc. We also present an equivalent data set for Chile Trench sediments outboard of this profile. The volcanic arc (including volcanic front and rear arc) samples primarily range from basalt to andesite/trachyandesite, whereas the backarc rocks are low-silica alkali basalts and trachybasalts. All samples show some characteristic subduction zone trace element enrichments and depletions, but the backarc samples show the least. Backarc basalts have higher Ce/Pb, Nb/U, Nb/Zr, and Ta/Hf, and lower Ba/Nb and Ba/La, consistent with less of a slab-derived component in the backarc and, consequently, lower degrees of mantle melting. The mantle-like Ύ18O in olivine and plagioclase phenocrysts (volcanic arc = 4.9-5.6 and backarc = 5.0-5.4 per mil) and lack of correlation between Ύ18O and indices of differentiation and other isotope ratios, argue against significant crustal assimilation. Volcanic arc and backarc samples almost completely overlap in Sr and Nd isotopic composition. High precision (double-spike) Pb isotope ratios are tightly correlated, precluding significant assimilation of older sialic crust but indicating mixing between a South Atlantic Mid Ocean-Ridge Basalt (MORB) source and a slab component derived from subducted sediments and altered oceanic crust. Hf-Nd isotope ratios define separate linear arrays for the volcanic arc and backarc, neither of which trend toward subducting sediment, possibly reflecting a primarily asthenospheric mantle array for the volcanic arc and involvement of enriched Proterozoic lithospheric mantle in the backarc. We propose a quantitative mixing model between a mixed-source, slab-derived melt and a heterogeneous mantle beneath the volcanic arc. The model is consistent with local geodynamic parameters, assuming water-saturated conditions within the slab

    Geochemical variations in the Central Southern Volcanic Zone, Chile (38-43°S): The role of fluids in generating arc magmas

    Get PDF
    We present new Sr-Nd-Pb-Hf-O isotope data from the volcanic arc (VA, volcanic front and rear arc) in Chile and the backarc (BA) in Argentina of the Central Southern Volcanic Zone in Chile (CSVZ; 38-43°S). Compared to the Transitional (T) SVZ (34.5-38°S; Jacques et al., 2013), the CSVZ VA has erupted greater volumes over shorter time intervals (Völker et al., 2011) and produced more tholeiitic melts. Although the CSVZ VA monogenetic cones are similar to the TSVZ VA samples, the CSVZ VA stratovolcanoes have higher ratios of highly fluid-mobile to less fluid-mobile trace elements (e.g. U/Th, Pb/Ce, Ba/Nb) and lower more- to less-incompatible fluid-immobile element ratios (e.g. La/Yb, La/Sm, Th/Yb, Nb/Yb), consistent with an overall higher fluid flux and greater degree of flux melting beneath the CSVZ stratovolcanoes compared to the CSVZ monogenetic centers and the TSVZ VA. The CSVZ monogenetic centers overlap the TSVZ in Sr and Nd isotopes, but the stratovolcanoes are shifted to higher Sr and/or Nd isotope ratios. The Pb isotopic composition of the CSVZ overlaps the TSVZ, which is clearly dominated by the composition of the trench sediments, but the CSVZ monogenetic samples extend to less radiogenic Pb isotope ratios. Ύ18Omelt from the CSVZ stratovolcano samples are below the MORB range, whereas the CSVZ monogenetic and the TSVZ samples fall within and slightly above the MORB range. The Nd and Hf isotopic ratios of the CSVZ VA extend to more radiogenic compositions than found in the TSVZ VA, indicating a greater contribution from a more depleted source. These correlations are interpreted to reflect derivation of fluids from hydrothermally altered oceanic crust and/or serpentinized upper mantle of the subducting plate. CSVZ BA basalts largely overlap TSVZ BA basalts, displaying less or no subduction influence compared to the VA, but some CSVZ BA basalts tap more enriched mantle, possibly subcontinental lithosphere, with distinctively lower Nd and Hf and elevated 207Pb/204Pb and 208Pb/204Pb isotope ratios

    Ariel: Enabling planetary science across light-years

    Get PDF

    Enabling planetary science across light-years. Ariel Definition Study Report

    Get PDF
    Ariel, the Atmospheric Remote-sensing Infrared Exoplanet Large-survey, was adopted as the fourth medium-class mission in ESA's Cosmic Vision programme to be launched in 2029. During its 4-year mission, Ariel will study what exoplanets are made of, how they formed and how they evolve, by surveying a diverse sample of about 1000 extrasolar planets, simultaneously in visible and infrared wavelengths. It is the first mission dedicated to measuring the chemical composition and thermal structures of hundreds of transiting exoplanets, enabling planetary science far beyond the boundaries of the Solar System. The payload consists of an off-axis Cassegrain telescope (primary mirror 1100 mm x 730 mm ellipse) and two separate instruments (FGS and AIRS) covering simultaneously 0.5-7.8 micron spectral range. The satellite is best placed into an L2 orbit to maximise the thermal stability and the field of regard. The payload module is passively cooled via a series of V-Groove radiators; the detectors for the AIRS are the only items that require active cooling via an active Ne JT cooler. The Ariel payload is developed by a consortium of more than 50 institutes from 16 ESA countries, which include the UK, France, Italy, Belgium, Poland, Spain, Austria, Denmark, Ireland, Portugal, Czech Republic, Hungary, the Netherlands, Sweden, Norway, Estonia, and a NASA contribution

    Influence of the Sierra Leone mantle plume on the equatorial Mid-Atlantic Ridge: A Nd-Sr-Pb isotopic study

    No full text
    We report on a Pb‐Nd‐Sr isotope and rare earth study of Mid‐Atlantic Ridge (MAR) basalt glasses collected across the equatorial fracture zones from 7°S to 5°N (65 stations). The 1600‐km‐long profile reveals two mixing zones in the mantle that are isotopically distinct but cover the same range of (La/Sm)n ratios (0.3–2), with a gradational boundary between the Romanche and the Chain fracture zones. The potential mantle temperature profile inferred from Na2O content is also quite distinct. The north zone is dominated by a major, La/Sm and HIMU type Pb isotope anomaly centered at 1.7°N±300 km, which is flanked by two zones mildly radiogenic in Pb but depleted in light REE. A kinematic and evolutionary model describing the dispersion and interaction of the Sierra Leone plume with the asthenosphere and the MAR in the last 75 m.y. is proposed for this zone, which includes St. Paul and St. Peter's Rocks. In contrast, over the south zone the isotope/geochemical profiles are well correlated at all length scales and opposite in sign from the inferred potential mantle temperature profile and mean percent fusion. Broad negative gradients are observed between the Romanche and the Charcot fracture zones, superimposed by spikelike anomalies at the intersection with the eastern part of the Romanche and Chain transform faults, where cold plate edge effects prevail. The heterogeneous mantle model of Sleep [1984] and Langmuir and Bender [1984] is applicable to this zone, that is the volatile and radiogenic Pb‐rich lumps are preferentially melted during mantle decompression and passively sampled. The lumps may reflect the early dispersion of the St. Helena or Ascension mantle plumes under a thick lithosphere, followed by redistribution due to intense shearing, continental lithosphere delamination, and secondary mantle convection. The presence of a depleted asthenosphere unpolluted by plumes along the 400‐km‐long MAR segment between the Charcot and Ascension fracture zones is also apparent in the data

    Influence of the Sierra Leone mantle plume on the equatorial Mid-Atlantic Ridge: A Nd-Sr-Pb isotopic study

    No full text
    We report on a Pb‐Nd‐Sr isotope and rare earth study of Mid‐Atlantic Ridge (MAR) basalt glasses collected across the equatorial fracture zones from 7°S to 5°N (65 stations). The 1600‐km‐long profile reveals two mixing zones in the mantle that are isotopically distinct but cover the same range of (La/Sm)n ratios (0.3–2), with a gradational boundary between the Romanche and the Chain fracture zones. The potential mantle temperature profile inferred from Na2O content is also quite distinct. The north zone is dominated by a major, La/Sm and HIMU type Pb isotope anomaly centered at 1.7°N±300 km, which is flanked by two zones mildly radiogenic in Pb but depleted in light REE. A kinematic and evolutionary model describing the dispersion and interaction of the Sierra Leone plume with the asthenosphere and the MAR in the last 75 m.y. is proposed for this zone, which includes St. Paul and St. Peter's Rocks. In contrast, over the south zone the isotope/geochemical profiles are well correlated at all length scales and opposite in sign from the inferred potential mantle temperature profile and mean percent fusion. Broad negative gradients are observed between the Romanche and the Charcot fracture zones, superimposed by spikelike anomalies at the intersection with the eastern part of the Romanche and Chain transform faults, where cold plate edge effects prevail. The heterogeneous mantle model of Sleep [1984] and Langmuir and Bender [1984] is applicable to this zone, that is the volatile and radiogenic Pb‐rich lumps are preferentially melted during mantle decompression and passively sampled. The lumps may reflect the early dispersion of the St. Helena or Ascension mantle plumes under a thick lithosphere, followed by redistribution due to intense shearing, continental lithosphere delamination, and secondary mantle convection. The presence of a depleted asthenosphere unpolluted by plumes along the 400‐km‐long MAR segment between the Charcot and Ascension fracture zones is also apparent in the data

    The Simbol-X focal plane

    No full text
    International audienceThe Simbol-X focal plane is designed to detect photons focused by the mirror in the 0.5 to 100 keV energy band. Composed of two detectors, it will measure the position, energy, and arrival time of each incoming X-ray. On top of it will be a collimator to shield all photons not coming from the mirror field of view. The whole system is surrounded by an active and passive shielding in order to ensure the required very low background
    corecore