109 research outputs found

    Sea Surface Temperature of the mid-Piacenzian Ocean:A Data-Model Comparison

    Get PDF
    The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21st century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction

    Pliocene Model Intercomparison Project Phase 3 (PlioMIP3) – Science plan and experimental design

    Get PDF
    The Pliocene Model Intercomparison Project (PlioMIP) was initiated in 2008. Over two phases PlioMIP has helped co-ordinate the experimental design and publication strategy of the community, which has included an increasing number of climate models and modelling groups from around the world. It has engaged with palaeoenvironmental scientists to foster new data synthesis supporting the construction of new model boundary conditions, as well as to facilitate new data-model comparisons. The work has advanced our understanding of Pliocene climates and environments, enhanced our knowledge regarding the ability of complex climate and Earth System models to accurately simulate climate change, and helped to refine our estimates of how sensitive the climate system is to forcing conditions. In this community protocol paper, we outline the scientific plan for PlioMIP Phase 3 (PlioMIP3). This plan provides the required guidance to participating modelling groups from around the world to successfully set up and perform PlioMIP3 climate model experiments. The project is open to new participants from the scientific community (both from the climate modelling and geosciences communities). In PlioMIP3, we retain the PlioMIP2 Core experiments (Eoi400, E280) and extend the Core requirements to include either an experiment focussed on the Early Pliocene or an alternative Late Pliocene simulation (or both). These additions (a) allow a comparison of Early and Late Pliocene warm intervals and help build research connections and synergy with the MioMIP (Miocene Model Intercomparison Project - also known as DeepMIP-Miocene) and PlioMioVAR projects (Pliocene-Miocene Variability Working Group), and (b) create an alternative time slice simulation for 3.205 Ma (MIS KM5c) through removal of some of the largest palaeogeographic differences introduced between PlioMIP1 and 2 resulting in minimal land-sea mask variations from the modern. In addition, we present ten optional experiments designed to enhance our assessment of climate sensitivity and to explore the uncertainty in greenhouse gas-related forcing. For the first time, we introduce orbital sensitivity experiments into the science plan, as well as simulations incorporating dynamic vegetation-climate feedbacks and an experiment designed to examine the potential significance of East Antarctic Ice Sheet boundary condition uncertainty. These changes enhance palaeo-to-future scientific connections and enable an exploration of the significance of palaeogeographic uncertainties on climate simulations

    Planck early results III : First assessment of the Low Frequency Instrument in-flight performance

    Get PDF
    Peer reviewe

    Planck early results. II. The thermal performance of Planck

    Get PDF
    The performance of the Planck instruments in space is enabled by their low operating temperatures, 20 K for LFI and 0.1 K for HFI, achieved through a combination of passive radiative cooling and three active mechanical coolers. The scientific requirement for very broad frequency coverage led to two detector technologies with widely different temperature and cooling needs. Active coolers could satisfy these needs; a helium cryostat, as used by previous cryogenic space missions (IRAS, COBE, ISO, Spitzer, AKARI), could not. Radiative cooling is provided by three V-groove radiators and a large telescope baffle. The active coolers are a hydrogen sorption cooler (<20 K), a 4He Joule-Thomson cooler (4.7 K), and a 3He-4He dilution cooler (1.4 K and 0.1 K). The flight system was at ambient temperature at launch and cooled in space to operating conditions. The HFI bolometer plate reached 93 mK on 3 July 2009, 50 days after launch. The solar panel always faces the Sun, shadowing the rest of Planck, and operates at a mean temperature of 384 K. At the other end of the spacecraft, the telescope baffle operates at 42.3 K and the telescope primary mirror operates at 35.9 K. The temperatures of key parts of the instruments are stabilized by both active and passive methods. Temperature fluctuations are driven by changes in the distance from the Sun, sorption cooler cycling and fluctuations in gas-liquid flow, and fluctuations in cosmic ray flux on the dilution and bolometer plates. These fluctuations do not compromise the science data

    Overview of recent physics results from the National Spherical Torus Experiment (NSTX)

    Full text link

    Early Pliocene (Zanclean) stratigraphic framework for PRISM5/PlioMIP3 time slices

    No full text
    Global reconstructions of Pliocene climate provide important insights into how the climate system operates under elevated temperatures and atmospheric CO2 levels. These reconstructions have been used extensively in paleoclimate modeling experiments for comparison to simulated conditions, and as boundary conditions. Most previous work focused on the Late Pliocene interval known as the mid Piacenzian Warm Period (mPWP), the interval originally identified by the U.S. Geological Survey Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM) as the PRISM interval or Mid Pliocene Warm Period. The term Mid Pliocene Warm Period is a misnomer due to changes to the geological time scale, and its use should be discontinued. The Pliocene Model Intercomparison Project (PlioMIP), now in its third phase, is expanding to include a focus on the Early Pliocene (Zanclean). PlioMIP3 experiments will allow comparison of environmental and climatic conditions before and after closure of the Central American Seaway (CAS). PlioMIP3 used the annual insolation pattern at the top of the atmosphere to determine time slices in the Zanclean that have orbital configurations that are most similar to modern. Two have been selected by PlioMIP and adopted by PRISM for inclusion in future studies: PRISM5.1 (4.474 Ma) and PRISM5.2 (4.870 Ma). Here we establish the stratigraphic framework for these Early Pliocene time slices and furnish information to help locate these intervals in proxy records of paleoenvironmental data using oxygen isotope stratigraphy, paleomagnetic stratigraphy, biostratigraphy, and biochronology (calibrated planktic foraminifer and calcareous nannofossil events)
    • 

    corecore