14 research outputs found
Mapping out SU(5) GUTs with non-Abelian discrete flavor symmetries
We construct a class of supersymmetric SU(5) GUT models that produce nearly
tribimaximal lepton mixing, the observed quark mixing matrix, and the quark and
lepton masses, from discrete non-Abelian flavor symmetries. The SU(5) GUTs are
formulated on two five-dimensional throats in the flat limit and the neutrino
masses become small due to the type-I seesaw mechanism. The discrete
non-Abelian flavor symmetries are given by semi-direct products of cyclic
groups that are broken at the infrared branes at the tip of the throats. As a
result, we obtain SU(5) GUTs that provide a combined description of non-Abelian
flavor symmetries and quark-lepton complementarity.Comment: 5 pages, 3 figures, RevTeX. References and comments added. Final
version to appear in Phys. Rev.
Perturbing exactly tri-bimaximal neutrino mixings with charged lepton mass matrices
We study perturbations of exactly tri-bimaximal neutrino mixings under the
assumption that they are coming solely from the charged lepton mass matrix.
This may be plausible in scenarios where the mass generation mechanisms of
neutrinos and charged leptons/quarks have a different origin. As a working
hypothesis, we assume mass textures which may be generated by the
Froggatt-Nielsen mechanism for the charged lepton and quark sectors, which
generically leads to strong hierarchies, whereas the neutrino sector is exactly
tri-bimaximal with a mild (normal) hierarchy. We find that in this approach,
deviations from maximal atmospheric mixing can be introduced without affecting
theta_13 and theta_12, whereas a deviation of theta_13 or theta_12 from its
tri-bimaximal value will inevitably lead to a similar-sized deviation of the
other parameter. Therefore, the already very precise knowledge of theta_12
points towards small sin^2(2 theta_13) <= 0.01. The magnitude of this deviation
can be controlled by the specific form of the charged lepton texture.Comment: 13 pages, 9 figures; matches published version, changes in notatio
Group space scan of flavor symmetries for nearly tribimaximal lepton mixing
We present a systematic group space scan of discrete Abelian flavor
symmetries for lepton mass models that produce nearly tribimaximal lepton
mixing. In our models, small neutrino masses are generated by the type-I seesaw
mechanism. The lepton mass matrices emerge from higher-dimension operators via
the Froggatt-Nielsen mechanism and are predicted as powers of a single
expansion parameter \epsilon that is of the order of the Cabibbo angle
\theta_C\simeq 0.2. We focus on solutions that can give close to tribimaximal
lepton mixing with a very small reactor angle \theta_{13}\approx 0 and find
several thousand explicit such models that provide an excellent fit to current
neutrino data. The models are rather general in the sense that large leptonic
mixings can come from the charged leptons and/or neutrinos. Moreover, in the
neutrino sector, both left- and right-handed neutrinos can mix maximally. We
also find a new relation \theta_{13}\lesssim\epsilon^3 for the reactor angle
and a new sum rule \theta_{23}\approx\pi/4+\epsilon/\sqrt{2} for the
atmospheric angle, allowing the models to be tested in future neutrino
oscillation experiments.Comment: 18 pages, 2 tables, 2 figures, references added, final version to
appear in JHE
Systematic Parameter Space Search of Extended Quark-Lepton Complementarity
We systematically investigate the parameter space of neutrino and charged
lepton mass matrices for textures motivated by an extended quark-lepton
complementarity. As the basic hypothesis, we postulate that all mixing angles
in U_l and U_nu be either maximal or described by powers of a single small
quantity epsilon ~ theta_C. All mass hierarchies are described by this epsilon
as well. In this study, we do not assume specific forms for U_l and U_nu, such
as large mixing coming from the neutrino sector only. We perform a systematic
scan of the 262,144 generated mixing matrices for being compatible with current
experimental data, and find a sample of 2,468 possibilities. We then analyze
and classify the effective charged lepton and neutrino mass textures, where we
especially focus on a subset of models getting under pressure for small
theta_13. In addition, we predict the mixing angle distributions from our
sample of all valid textures, and study the robustness of this prediction. We
also demonstrate how our procedure can be extended to predictions of the Dirac
and Majorana phases in U_PMNS. For instance, we find that CP conservation in
neutrino oscillations is preferred, and we can impose a lower bound on the
mixing matrix element for neutrinoless double beta decay.Comment: 37 pages, 9 figures. Small error in Eq. (36) corrected, and Figs. 8
and 9 updated. Final version matched to Nuclear Physics B version. A detailed
list of our textures compatible with current data can be obtained at
http://theorie.physik.uni-wuerzburg.de/~winter/Resources/Textures/index.htm
Deviations from Tribimaximal Neutrino Mixing
Current neutrino data are consistent with the so-called tribimaximal mixing
scenario, which predicts \sin^2 \theta_{12}=1/3, zero U_{e3} and maximal
\theta_{23}. This implies a special form of the neutrino mass matrix.
Introducing small breaking terms in this mass matrix generates deviations from
the tribimaximal scheme and leads to testable correlations between the
parameters. They depend on where the perturbation is located in the mass
matrix. A special case of such perturbations are radiative corrections.
Alternative deviations from tribimaximal mixing may stem from contributions of
the charged lepton sector. If there is quark-lepton-unification and it is the
CKM matrix which corrects the tribimaximal mixing scheme, then almost maximal
CP violation and sizable deviation from zero U_{e3} are implied.Comment: 17 pages, 4 figures; to appear in PL
Systematischer Modellbau mit Flavor Symmetrien
Die Beobachtung von Neutrinomassen und Leptonenmischungen haben gezeigt, dass das Standard-Modell unvollständig ist. Im Zuge dieser Entdeckung tauchen neue Fragestellungen auf: warum sind die Neutrinomassen so klein, wie sieht ihre Massenhierarchie aus, warum sind die Mischungen im Quark- und Leptonen-Sektor so unterschiedlich oder welche Form hat der Higgs-Sektor. Um diese Fragen zu beantworten und um zukünftige experimentelle Daten vorherzusagen, werden verschiedene Ansätze betrachtet. Besonders interessant sind Grand Unified Theories, wie SU(5) oder SO(10). GUTs sind vertikale Symmetrien, da sie die SM-Teilchen in Multipletts vereinheitlichen und üblicherweise neue Elementarteilchen vorhersagen, die durch den Seesaw-Mechanismus, auf natürliche Weise die Kleinheit der Neutrinomassen erklären. Darüberhinaus sind auch horizontale Symmetrien, d.h. Flavor-Symmetrien, welche auf den Generationen-Raum der SM-Teilchen wirken, interessant. Sie können die Quark- und Leptonen-Massenhierarchien, sowie die unterschiedlichen Quark- und Leptonenmischungen, erklären. Ausserdem beeinflussen Flavor-Symmetrien massgeblich den Higgs-Sektor und sagen bestimmte Formen von Massenmatrizen vorher. Diese hohe Vorhersagekraft machen GUTs und Flavor-Symmetrien sowohl für Theoretiker, als auch für Experimentalphysiker interessant. Solche Erweiterungen des SM können mit weiteren Konzepten wie Supersymmetrie oder extra Dimensionen kombiniert werden. Hinzu kommt, dass sie für gewöhnlich Auswirkungen auf die beobachtete Materie-Antimaterie Asymmetrie des Universums haben und einen dunkle Materie Kandidaten beinhalten können. Im Allgemeinen sagen sie auch die seltene Leptonenzahl verletzenden Zerfälle mu -> e gamma, tau -> mu gamma und tau -> e gamma vorher, die stark von Experimenten eingeschränkt sind, aber möglicherweise in der Zukunft beobachtet werden. In dieser Arbeit kombinieren wir all diese Zugänge, d.h. GUTs, den Seesaw-Mechanismus und Flavor-Symmetrien. Drüber hinaus ist unser Anliegen einen systematischen Zugang zum Modellbau zu entwickeln und durchzuführen, sowie die Suche nach phänomenologischen Implikationen. Dies stellt eine neue Sichtweise im Modellbau dar, da es uns erlaubt bestimmte Modelle durch ihre theoretischen und phänomenologischen Vorhersagen zu filtern. D.h. wir können weitere Einschränkungen an Modelle fordern, um ein bestimmtes auszuwählen. Die Ergebnisse unserer Herangehensweise sind zum Beispiel mannigfaltige Leptonen-Flavor- und GUT-Modelle, ein systematischer Scan von Leptonenzahl verletzenden Prozessen, neue Massenmatrizen, eine neues Veständnis der Leptonenmischungswinkel, eine Verallgemeinerung der Idee der Quark-Leptonen-Komplementarität theta_12=pi/4-epsilon/sqrt{2} und zum ersten Mal die QLC-Relation in einer SU(5) GUT.The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays mu -> e gamma, tau -> mu gamma and tau -> e gamma which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and to search for phenomenological implications. This provides a new perspective in model building since it allows us to screen models by its predictions on the theoretical and phenomenological side, i.e., we can apply further model constraints to single out a desired model. The results of our approach are, e.g., diverse lepton flavor and GUT models, a systematic scan of lepton flavor violation, new mass matrices, a new understanding of lepton mixing angles, a general extension of the idea of quark-lepton complementarity theta_12=pi/4-epsilon/sqrt{2} and for the first time the QLC relation in an SU(5) GUT