1,289 research outputs found
Evaluation of the influence of susceptibility-induced magnetic field distortions on the precision of contouring intracranial organs at risk for stereotactic radiosurgery
Background and purpose
Magnetic resonance imaging (MRI) is a crucial factor in optimal treatment planning for stereotactic radiosurgery. To further the awareness of possible errors in MRI, this work aimed to investigate the magnitude of susceptibility induced MRI distortions for intracranial organs at risk (OARs) and test the effectiveness of actively shimming these distortions.
Materials and methods
Distortion maps for 45 exams of 42 patients (18 on a 1.5 T MRI scanner, 27 on a 3 T MRI scanner) were calculated based on a high-bandwidth double-echo gradient echo sequence. The investigated OARs were brainstem, chiasm, eyes, and optic nerves. The influence of active shimming was investigated by comparing unshimmed 1.5 T data with shimmed 3 T data and comparing the results to a model based prediction.
Results
The median distortion for the different OARs was found to be between 0.13 and 0.18 mm for 1.5 T and between 0.11 and 0.13 mm for 3 T. The maximum distortion was found to be between 1.3 and 1.7 mm for 1.5 T and between 1.1 and 1.4 mm for 3 T. The variation of values was much higher for 1.5 T than for 3 T across all investigated OARs. Active shimming was found to reduce distortions by a factor of 2.3 to 2.9 compared to the expected values.
Conclusions
Using a safety margin for OARs of 1 mm would have encompassed 99.8% of the distortions. Since distortions are inversely proportional to the readout bandwidth, they can be further reduced by increasing the bandwidth. Additional error sources like gradient nonlinearities need to be addressed separately
1-Alkynyltriazenes as Functional Analogues of Ynamides
The chemical reactivity of 1-alkynyltriazenes has been investigated and is found to parallel the reactivity of ynamides. The similarity in reactivity of these two classes of compounds is demonstrated by addition reactions with acids, by cycloaddition reactions with ketenes, tetracyanoethene, and cyclopropanes, as well as by intramolecular cyclization reactions. The presence of reactive triazene groups in the products enables subsequent transformations. Overall, our results suggest that 1-alkynyltriazenes should become valuable reagents in synthetic organic chemistry
Implementation of a dedicated 1.5 T MR scanner for radiotherapy treatment planning featuring a novel high-channel coil setup for brain imaging in treatment position
Abstract
Purpose
To share our experiences in implementing a dedicated magnetic resonance (MR) scanner for radiotherapy (RT) treatment planning using a novel coil setup for brain imaging in treatment position as well as to present developed core protocols with sequences specifically tuned for brain and prostate RT treatment planning.
Materials and methods
Our novel setup consists of two large 18-channel flexible coils and a specifically designed wooden mask holder mounted on a flat tabletop overlay, which allows patients to be measured in treatment position with mask immobilization. The signal-to-noise ratio (SNR) of this setup was compared to the vendor-provided flexible coil RT setup and the standard setup for diagnostic radiology. The occurrence of motion artifacts was quantified. To develop magnetic resonance imaging (MRI) protocols, we formulated site- and disease-specific clinical objectives.
Results
Our novel setup showed mean SNR of 163 ± 28 anteriorly, 104 ± 23 centrally, and 78 ± 14 posteriorly compared to 84 ± 8 and 102 ± 22 anteriorly, 68 ± 6 and 95 ± 20 centrally, and 56 ± 7 and 119 ± 23 posteriorly for the vendor-provided and diagnostic setup, respectively. All differences were significant (p > 0.05). Image quality of our novel setup was judged suitable for contouring by expert-based assessment. Motion artifacts were found in 8/60 patients in the diagnostic setup, whereas none were found for patients in the RT setup. Site-specific core protocols were designed to minimize distortions while optimizing tissue contrast and 3D resolution according to indication-specific objectives.
Conclusion
We present a novel setup for high-quality imaging in treatment position that allows use of several immobilization systems enabling MR-only workflows, which could reduce unnecessary dose and registration inaccuracies
Towards a public policy of cities and human settlements in the 21st century
Cities and other human settlements are major contributors to climate change and are highly vulnerable to its impacts. They are also uniquely positioned to reduce greenhouse gas emissions and lead adaptation efforts. These compound challenges and opportunities require a comprehensive perspective on the public policy of human settlements. Drawing on core literature that has driven debate around cities and climate over recent decades, we put forward a set of boundary objects that can be applied to connect the knowledge of epistemic communities and support an integrated urbanism. We then use these boundary objects to develop the Goals-Intervention-Stakeholder-Enablers (GISE) framework for a public policy of human settlements that is both place-specific and provides insights and tools useful for climate action in cities and other human settlements worldwide. Using examples from Berlin, we apply this framework to show that climate mitigation and adaptation, public health, and well-being goals are closely linked and mutually supportive when a comprehensive approach to urban public policy is applied
Magnetresonanztomographie für die stereotaktische Strahlentherapie des Gehirns
Abstract
Due to its superior soft tissue contrast, magnetic resonance imaging (MRI) is essential for many radiotherapy treatment indications. This is especially true for treatment planning in intracranial tumors, where MRI has a long-standing history for target delineation in clinical practice. Despite its routine use, care has to be taken when selecting and acquiring MRI studies for the purpose of radiotherapy treatment planning. Requirements on MRI are particularly demanding for intracranial stereotactic radiotherapy, where accurate imaging has a critical role in treatment success. However, MR images acquired for routine radiological assessment are frequently unsuitable for high-precision stereotactic radiotherapy as the requirements for imaging are significantly different for radiotherapy planning and diagnostic radiology. To assure that optimal imaging is used for treatment planning, the radiation oncologist needs proper knowledge of the most important requirements concerning the use of MRI in brain stereotactic radiotherapy. In the present review, we summarize and discuss the most relevant issues when using MR images for target volume delineation in intracranial stereotactic radiotherapy
Challenges of operational river forecasting
Skillful and timely streamflow forecasts are critically important to water managers and emergency protection services. To provide these forecasts, hydrologists must predict the behavior of complex coupled human–natural systems using incomplete and uncertain information and imperfect models. Moreover, operational predictions often integrate anecdotal information and unmodeled factors. Forecasting agencies face four key challenges: 1) making the most of available data, 2) making accurate predictions using models, 3) turning hydrometeorological forecasts into effective warnings, and 4) administering an operational service. Each challenge presents a variety of research opportunities, including the development of automated quality-control algorithms for the myriad of data used in operational streamflow forecasts, data assimilation, and ensemble forecasting techniques that allow for forecaster input, methods for using human-generated weather forecasts quantitatively, and quantification of human interference in the hydrologic cycle. Furthermore, much can be done to improve the communication of probabilistic forecasts and to design a forecasting paradigm that effectively combines increasingly sophisticated forecasting technology with subjective forecaster expertise. These areas are described in detail to share a real-world perspective and focus for ongoing research endeavors
Structural, ecological and biogeographical attributes of European vegetation alliances
The first comprehensive phytosociological classification of all vegetation types in Europe (EuroVegChecklist; Applied Vegetation Science, 2016, 19, 3–264) contained brief descriptions of each type. However, these descriptions were not standardized and mentioned only the most distinct features of each vegetation type. The practical application of the vegetation classification system could be enhanced if users had the option to select sets of vegetation types based on various combinations of structural, ecological, and biogeographical attributes. Based on a literature review and expert knowledge, we created a new database that assigns standardized categorical attributes of 12 variables to each of the 1106 alliances dominated by vascular plants defined in EuroVegChecklist. These variables include dominant life form, phenological optimum, substrate moisture, substrate reaction, salinity, nutrient status, soil organic matter, vegetation region, elevational vegetation belt, azonality, successional status and naturalness. The new database has the potential to enhance the usefulness of phytosociological classification for researchers and practitioners and to help understand this classification to non-specialists
Inferring cellular networks – a review
In this review we give an overview of computational and statistical methods to reconstruct cellular networks. Although this area of research is vast and fast developing, we show that most currently used methods can be organized by a few key concepts. The first part of the review deals with conditional independence models including Gaussian graphical models and Bayesian networks. The second part discusses probabilistic and graph-based methods for data from experimental interventions and perturbations
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2
- …