739 research outputs found

    Pattern induced ordering of semiconducting graphene ribbons grown from nitrogen-seeded SiC

    Get PDF
    International audienceA wide band gap semiconducting form of graphene can be produced by growing a buckled form of graphene from a SiC(0001) surface randomly seeded with nitrogen. In this work, we show that the disorder observed in this form of graphene can be substantially reduced by pre-patterning the nitrogen seeded SiC surface into trenches. The result of the patterning is highly improved film thickness variations, orientational epitaxy, domain size, and electronic structure. The ordering induced by this patterned growth offers a way to take advantage of the extremely high mobilities and switching speeds in C-face graphene devices while having the thickness uniformity and fabrication scalability normally only achievable for graphene grown on the SiC(0001) Si-fac

    Modifying Effects of the HFE Polymorphisms on the Association between Lead Burden and Cognitive Decline

    Get PDF
    Background: As iron and lead promote oxidative damage, and hemochromatosis (HFE) gene polymorphisms increase body iron burden, HFE variant alleles may modify the lead burden and cognitive decline relationship. Objective: Our goal was to assess the modifying effects of HFE variants on the lead burden and cognitive decline relation in older adults. Methods: We measured tibia and patella lead using K-X-ray fluorescence (1991–1999) among participants of the Normative Aging Study, a longitudinal study of community-dwelling men from greater Boston. We assessed cognitive function with the Mini-Mental State Examination (MMSE) twice (1993–1998 and 1995–2000) and genotyped participants for HFE polymorphisms. We estimated the adjusted mean differences in lead-associated annual cognitive decline across HFE genotype groups (n = 358). Results: Higher tibia lead was associated with steeper cognitive decline among participants with at least one HFE variant allele compared with men with only wild-type alleles (p interaction = 0.03), such that a 15 μg/g increase in tibia lead was associated with a 0.2 point annual decrement in MMSE score among HFE variant allele carriers. This difference in scores among men with at least one variant allele was comparable to the difference in baseline MMSE scores that we observed among men who were 4 years apart in age. Moreover, the deleterious association between tibia lead and cognitive decline appeared progressively worse in participants with increasingly more copies of HFE variant alleles (p-trend = 0.008). Results for patella lead were similar. Conclusion: Our findings suggest that HFE polymorphisms greatly enhance susceptibility to lead-related cognitive impairment in a pattern consistent with allelelic dose

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    NR-2L: A Two-Level Predictor for Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features

    Get PDF
    Nuclear receptors (NRs) are one of the most abundant classes of transcriptional regulators in animals. They regulate diverse functions, such as homeostasis, reproduction, development and metabolism. Therefore, NRs are a very important target for drug development. Nuclear receptors form a superfamily of phylogenetically related proteins and have been subdivided into different subfamilies due to their domain diversity. In this study, a two-level predictor, called NR-2L, was developed that can be used to identify a query protein as a nuclear receptor or not based on its sequence information alone; if it is, the prediction will be automatically continued to further identify it among the following seven subfamilies: (1) thyroid hormone like (NR1), (2) HNF4-like (NR2), (3) estrogen like, (4) nerve growth factor IB-like (NR4), (5) fushi tarazu-F1 like (NR5), (6) germ cell nuclear factor like (NR6), and (7) knirps like (NR0). The identification was made by the Fuzzy K nearest neighbor (FK-NN) classifier based on the pseudo amino acid composition formed by incorporating various physicochemical and statistical features derived from the protein sequences, such as amino acid composition, dipeptide composition, complexity factor, and low-frequency Fourier spectrum components. As a demonstration, it was shown through some benchmark datasets derived from the NucleaRDB and UniProt with low redundancy that the overall success rates achieved by the jackknife test were about 93% and 89% in the first and second level, respectively. The high success rates indicate that the novel two-level predictor can be a useful vehicle for identifying NRs and their subfamilies. As a user-friendly web server, NR-2L is freely accessible at either http://icpr.jci.edu.cn/bioinfo/NR2L or http://www.jci-bioinfo.cn/NR2L. Each job submitted to NR-2L can contain up to 500 query protein sequences and be finished in less than 2 minutes. The less the number of query proteins is, the shorter the time will usually be. All the program codes for NR-2L are available for non-commercial purpose upon request

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    The Validity and Structure of Culture-Level Personality Scores: Data From Ratings of Young Adolescents

    Get PDF
    We examined properties of culture-level personality traits in ratings of targets (N=5,109) ages 12 to 17 in 24 cultures. Aggregate scores were generalizable across gender, age, and relationship groups and showed convergence with culture-level scores from previous studies of self-reports and observer ratings of adults, but they were unrelated to national character stereotypes. Trait profiles also showed cross-study agreement within most cultures, 8 of which had not previously been studied. Multidimensional scaling showed that Western and non-Western cultures clustered along a dimension related to Extraversion. A culture-level factor analysis replicated earlier findings of a broad Extraversion factor but generally resembled the factor structure found in individuals. Continued analysis of aggregate personality scores is warranted. This article is a US Government work and is in the public domain in the USA.Fil: McCrae, Robert R.. National Institute on Ageing; CanadáFil: Terracciano, Antonio. National Institute on Ageing; CanadáFil: De Fruyt, Filip. University of Ghent; BélgicaFil: De Bolle, Marleen. University of Ghent; BélgicaFil: Gelfand, Michele J.. University of Maryland; Estados UnidosFil: Costa Jr., Paul T.. National Institute on Ageing; CanadáFil: Klinkosz, Waldemar. The John Paul II Catholic University of Lublin; PoloniaFil: Knežević, Goran. Belgrade University; SerbiaFil: Leibovich de Figueroa, Nora. Universidad de Buenos Aires; ArgentinaFil: Löckenhoff, Corinna E.. Cornell University; Estados UnidosFil: Martin, Thomas A.. Susquehanna University; Estados UnidosFil: Marušić, Iris. Institute for Social Research; CroaciaFil: Mastor, Khairul Anwar. Universiti Kebangsaan Malaysia; MalasiaFil: Nakazato, Katsuharu. Iwate Prefectural University; AfganistánFil: Nansubuga, Florence. Makerere University; UgandaFil: Porrata, Jose. No especifíca;Fil: Purić, Danka. Belgrade University; SerbiaFil: Realo, aAnu. University of Tartu; EstoniaFil: Reátegui, Norma. Universidad Peruana Cayetano Heredia; PerúFil: Rolland, Jean Pierre. Universite Paris Ouest Nanterre la Defense; FranciaFil: Schmidt, Vanina Ines. Universidad de Buenos Aires. Facultad de Psicología. Instituto de Investigaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sekowski, Andrzej. The John Paul II Catholic University of Lublin; PoloniaFil: Shakespeare Finch, Jane. Queensland University of Technology; AustraliaFil: Shimonaka, Yoshiko. Bunkyo Gakuin University; JapónFil: Simonetti, Franco. Pontificia Universidad Católica de Chile; ChileFil: Siuta, Jerzy. Jagiellonian University;Fil: Szmigielska, Barbara. Jagiellonian University;Fil: Vanno, Vitanya. Srinakharinwirot University; TailandiaFil: Wang, Lei. Peking University; ChinaFil: Yik, Michelle. The Hong Kong University of Science and Technology; Hong Kon

    An Interferon-Related Signature in the Transcriptional Core Response of Human Macrophages to Mycobacterium tuberculosis Infection

    Get PDF
    The W-Beijing family of Mycobacterium tuberculosis (Mtb) strains is known for its high-prevalence and -virulence, as well as for its genetic diversity, as recently reported by our laboratories and others. However, little is known about how the immune system responds to these strains. To explore this issue, here we used reverse engineering and genome-wide expression profiling of human macrophage-like THP-1 cells infected by different Mtb strains of the W-Beijing family, as well as by the reference laboratory strain H37Rv. Detailed data mining revealed that host cell transcriptome responses to H37Rv and to different strains of the W-Beijing family are similar and overwhelmingly induced during Mtb infections, collectively typifying a robust gene expression signature (“THP1r2Mtb-induced signature”). Analysis of the putative transcription factor binding sites in promoter regions of genes in this signature identified several key regulators, namely STATs, IRF-1, IRF-7, and Oct-1, commonly involved in interferon-related immune responses. The THP1r2Mtb-induced signature appeared to be highly relevant to the interferon-inducible signature recently reported in active pulmonary tuberculosis patients, as revealed by cross-signature and cross-module comparisons. Further analysis of the publicly available transcriptome data from human patients showed that the signature appears to be relevant to active pulmonary tuberculosis patients and their clinical therapy, and be tuberculosis specific. Thus, our results provide an additional layer of information at the transcriptome level on mechanisms involved in host macrophage response to Mtb, which may also implicate the robustness of the cellular defense system that can effectively fight against genetic heterogeneity in this pathogen
    corecore