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Abstract The severity of sustained injury resulting from
assault-related violence can beminimised by reducing detec-
tion time. However, it has been shown that human operators
perform poorly at detecting events found in video footage
when presented with simultaneous feeds. We utilise com-
puter vision techniques to develop an automated method
of abnormal crowd detection that can aid a human oper-
ator in the detection of violent behaviour. We observed
that behaviour in city centre environments often occurs in
crowded areas, resulting in individual actions being occluded
by other crowd members. We propose a real-time descrip-
tor that models crowd dynamics by encoding changes in
crowd texture using temporal summaries of grey level co-
occurrence matrix features. We introduce a measure of
inter-frame uniformity and demonstrate that the appear-
ance of violent behaviour changes in a less uniform manner
when compared to other types of crowd behaviour. Our pro-
posed method is computationally cheap and offers real-time
description. Evaluating our method using a privately held
CCTV dataset and the publicly available Violent Flows, UCF
Web Abnormality and UMN Abnormal Crowd datasets, we
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report a receiver operating characteristic score of 0.9782,
0.9403, 0.8218 and 0.9956, respectively.
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1 Introduction

City centre locations around the world are characterised by
the presence of surveillance cameras.One typical use of these
cameras is to aid law enforcement by allowing operators to
actively identify criminal activity. It is estimated that in the
UK alone there are upwards of 1.8 million closed-circuit
television (CCTV) cameras installed across both public and
private sectors, or about one camera for every 35 people,
with the average person falling into the viewshed of a cam-
era system at least 68 times a day [12,27]. An issue with
having such a large number of surveillance cameras is that
they capture too much data for effective human observation.
A study undertaken by Voorthuijsen et al. [32] investigated
the human ability to detect scenes of interest from video
data when presented with different numbers of simultaneous
video feeds. On average, the human ability to detect scenes
of interest dropped by 19% when the number of simultane-
ous feeds was increased from one to four. It is reasonable
to assume that the observed drop in event detection ability
becomes greater when a single person is subject to the much
larger video arrays common in modern observation centres.

Evidence suggests that surveillance systems can reduce
the incidence rate of hospital assault-related attendances.
Sivarajasingam et al. [31] investigated the relationship
between surveillance system installation on violence. It was
shown that police-recorded violence increased but hospital
admissions for assault-related injury fell, an effect that the
authors suggest is due to earlier police intervention prevent-
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ing disorder escalating to the point where serious injury is
inflicted on victims of violence. This finding was corrob-
orated by research undertaken by Florence et al. [9] that
evaluated data sharing schemes focused on effective strate-
gies for reducing violence. The authors of this study highlight
the importance of rapid intervention in reducing injury sever-
ity. Although surveillance systems were not the sole focus of
this research their usefulness at allowing for effective inter-
vention is acknowledged.A follow-up evaluation of the study
undertaken by Florence et al. [9] asserts a £1.2 million sav-
ing after the application of violence reduction strategies in
the year 2007 [10].

There are two practical limitations in using real-world
surveillance footage, firstly, the cost of upgrading video cap-
ture devices used in surveillance systems is high, and only
cameras that are deemed important are upgraded. It is there-
fore common for video surveillance systems to be composed
of both modern and legacy hardware components. The qual-
ity of recorded footage from older cameras is typically poor
due to hardware limitations, and it is common for footage
to have low spatial and temporal resolutions. Additionally,
outdoor CCTV cameras are subject to natural illumination
changes that result in poor contrast when recording footage
at night, which can make effective description of content
difficult. Second, footage of dense populations in urban envi-
ronments tends to depict moving, self-occluding crowds.
It can be difficult to generate a meaningful description of
individuals and their actions as the visual consistency of
recognisable shapes fluctuates greatly between frames due
to the high levels of occlusion. In recognising the poten-
tial value of surveillance systems in reducing assault-related
injury this paper describes a novel solution to the previously
discussed limitations, and therefore provides opportunities
for the classification of live surveillance feeds to aid oper-
ators’ early ascertainment of disorderly behaviour and by
extension, their capacity to direct resources that stop disor-
der escalating.

Our novel solution builds upon the idea of describing
crowded scenes using visual texture. Texture is well suited
for describing the seemingly unstructured patterns that result
from the mass occlusions caused by crowding [22]. We
assert that the appearance of abnormally behaving crowds
undergo different patterns of change when compared to
crowds exhibiting normal behaviour. We therefore propose a
description based on encoding the change in crowd appear-
ance over time. This is accomplished by computing texture
features on a per frame basis for a sequence of video
frames and summarising how the texture features evolve. We
present a computationally cheap method of abnormal crowd
description that achieves state-of-the-art results across many
datasets, including our own real-world CCTV dataset known
as CF-Violence. We show that our proposed method gen-
erates a scene description that can be used to discriminate

between abnormal and normal scenes available in the UMN
unusual crowd, andUCFWeb abnormality datasets. We also
demonstrate state-of-the-art discrimination between violent
and non-violent scenes as shown in theViolent Flows andCF-
Violence datasets. We also provide an extensive investigation
of the parameter effects of our proposed method and demon-
strate that violent behaviour holds a property of non-uniform
change over time, a property that to the authors knowledge
has not been previously discussed in the context of crowd
behaviour.

2 Related work

A wide selection of approaches aiming to solve the crowd
abnormality detection problem has been proposed over the
years. Kratz et al. [19] andMarques et al. [23] state that track-
ing features in extremely dense, complex crowds is infeasible
and that optical flow approximation can become unreliable.
Kratz et al. [19] avoid optical flow-based motion description
by extracting fixed size spatio-temporal volumes and com-
puting spatio-temporal gradients of pixel intensities which
are represented using a 3DGaussianMixtureModel (GMM).
The authorsmodel normal behaviour using aHiddenMarkov
Model and declare a new observation as abnormal if it does
not fit the learnt model. Wang et al. [34] also avoid an optical
flow-based representation when dealing with crowds, they
instead favour statistics computed from wavelet transformed
spatio-temporal slices taken from a spatio-temporal volume.
Although the effectiveness of optical flow is often a point of
theoretical contention when dealing with crowds, there exist
manymethods that utilisemeasures of optical flowwith great
results. Ryan et al. [7] encode optical flow vectors using
a 3-dimensional grey level co-occurrence matrix (GLCM)
structure, expressing the dynamics of a local region by the
uniformity of motion. The authors generate a model of nor-
mality using a Gaussian Mixture Model. The authors claim
that their method is both effective at discerning between
normal and abnormal scenes while maintaining an arguably
real-time processing speed of approximately nine frames per
second. Wang et al. [35] compute global Histogram of Opti-
cal FlowOrientation (HOFO) on a per-frame basis andmodel
normal behaviour using two separate methods, one-class
SVM learning and Kernel Principal Component Analysis
embedding. The authors show that the two approaches are
effective at modelling normal behaviour when used in con-
junction with their proposed descriptor; the one-class SVM
offered slightly greater performance. Chen et al. [6] extracted
a notion of crowd acceleration and stated that rapid changes
in acceleration can be used to identify a crowd displaying
normal attributed from a crowd currently undergoing a sit-
uation of panic. Recent work by Biswas et al. [4] expresses
the problem of abnormal behaviour analysis as identifying
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sparse, or rare behaviours. Each frame is represented as a
matrix of features, and matrix decomposition is applied to
separate the matrix components into two groups, low-rank
and sparse components; the latter of which is considered
anomalous.

The Violent Flows (ViF) method was proposed by Hass-
ner et al. [17] to identify violent crowds in densely populated
areas using changes in optical flowmagnitude. Gao et al. [11]
state that the ViF descriptor does not capture potentially
important changes in orientation and therefore introduced a
variant of the ViF descriptor (OViF) that utilises both orien-
tation and magnitude of optical flow. It was shown that ViF
offers greater classification ability on crowded data when
compared to OViF, but when combined they achieve greater
accuracy. Riberio et al. [30] introduce the Rotation Invari-
ant Motion Coherence RIMOC feature that is based on the
eigen-values of second-order statistics extracted from a His-
togram of Oriented Flows. A multi-scale structure is used
to model spatio-temporal configurations of features. The
authors assume that violent behaviour is unstructured and
aim to distinguish violence from non-violence by analysing
the likelihood of a feature belonging to a model of normality.

An alternative approach for modelling motion involves
tracking features to obtain motion trajectories. Zhou et
al. [40] train a Multi-Observation Hidden Markov Model
(MOHMM) usingmotion trajectories extracted from footage
of normal behaviour using a Kanade–Lucas–Tomasi Feature
Tracker (KLT). The probability of the trained model pro-
ducing a given observation is computed, if the probability
falls beyond a threshold then the observation is considered
abnormal. Marsden et al. [24] utilise a KLT tracker to extract
motion trajectories and compute holistic measures of crowd
collectiveness, conflict and density. These measures form a
feature vector that describes the dynamics of a scene. The
approach described by Zhou et al. is applicable to many
domains of crowd abnormality as it does not assume any
specific measurement of crowd motion, whereas the holis-
tic approach by Marsden et al. is useful on data where the
measures documented are known to exist. Although tracking
has shown to perform well at describing crowd behaviour,
Yang et al. [39] highlight the difficulty in tracking when
analysing sceneswith changing illumination, a property com-
mon of naturalistic environments.

One issue with computing measures of motion of a crowd
with great accuracy stems from self-occlusion. Occlusion
reduces inter-frame correspondences resulting in poor flow
approximation or tracking when using traditional optical
flow-based methods. Ali et al. [1] utilise a particle advec-
tion process to extract motion trajectories that describe the
underlying flow of a crowd, the process of particle advec-
tion smooths trajectories and introduces robustness to minor
occlusion. The motion trajectories are then used to gener-
ate a Finite Time Lyapunov Exponent (FTLE) field, and

subsequently segment a crowd based on motion. Using the
particle advection process, Mehran et al. [26] formulated
a Social Force Model (SFM) that described the interaction
force between pedestrians, a concept defined as a function of
desired movement and actual movement. Normal interaction
force sampleswere used to train a LatentDirichlet Allocation
(LDA) model of normality. Raghavendra et al. [28] extended
the work by Mehran et al. by using a particle swarm optimi-
sation process to minimise the interaction force so to model
the most typical crowd behaviours. Yang et al. [38] also built
upon the work by Mehran et al. by integrating crowd den-
sity that when combined with the SFM created a measure of
pressure between pedestrians.

Rao et al. [29] highlight the usefulness of GLCM-based
crowd description and used GLCM measures to describe
the spatial composition of tracked objects in a crowd. Early
research by Marana [22] formulated the crowd density esti-
mation problemas a globalmeasure of visual texture.Marana
showed that sparse and dense crowds hold notably different
textural compositions.Researchers [3,8,22,33] have used the
grey level co-occurrence matrix (GLCM) approach to crowd
description and have shown that Haralick’s GLCM features
can be used to successfully determine the density of a crowd.
The implication being that texture can provide a meaningful
description of the visual appearance crowds.

3 Proposed method overview

Our proposed method builds upon Haralick texture fea-
tures [15] which describe visual texture using statistics
derived from co-occurring grey level intensities.We compute
Haralick features for each frame in a sequence and describe
how these features evolve over time using simple summary
measures to provide a succinct and powerful descriptor of
crowd dynamics that yields fast compute time and robustness
to change over time. Haralick texture features are extracted
from a grey level co-occurrence matrix (GLCM). A GLCM
is generated by counting the co-occurring grey level intensity
values found in an image given a linear spatial relationship
between two pixels. The spatial relationship is defined by a
parameter pair (θ, d) where θ is the orientation and d is the
distance between two pixels. It is common to define a set of
parameter pairs (θ, d) and to then combine GLCMmatrices,
this is typically used to provide rotational invariance by using
a set of orientation parameters, typically in eight orientations,
spaced π/4 radians apart. The number of grey level values
Ng represents the number of unique intensity values present
in an image. It is common to scale an image from [0, 255] to
[0, Ng] before computing a GLCM, where Ng is a defined
number of grey-levels [15].

We compute the following features as defined by Haral-
ick [15]: Energy, Contrast, Homogeneity, Correlation and
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Dissimilarity. The variable P(i, j) expressed in Eqs. (1–5)
refers to the value at the (i, j)th position in a grey level co-
occurrence matrix.

Angular Second Moment =
Ng−1∑

i, j=0

P2
i, j (1)

Contrast =
∑Ng−1

i, j=0 Pi, j (i − j)2

(Ng − 1)2
(2)

Homogeneity =
Ng−1∑

i, j=0

Pi, j
1 + (i − j)2

(3)

Correlation =

[
∑Ng−1

i, j=0 Pi, j

[
(i−μi ) ( j−μ j )√

(σ 2
i )(σ 2

j )

]]
+ 1

2
(4)

Dissimilarity =
∑Ng−1

i, j=0 Pi, j |i − j |
Ng − 1

(5)

The equations for contrast (Eq. 2), correlation (Eq. 4) and
dissimilarity (Eq. 5) are altered such that the returned value
is bounded between [0, 1]. Given a series of images express-
ing appearance over time, we compute the aforementioned
texture features from the resulting time-ordered sequences of
texture measure over time, each referred to as x . We calcu-
late the statistical summary of each sequence to encode the
underlying crowd behaviour. Each sequence x is represented
as a 4-length feature vector composed of measures of mean,
standard deviation, skewness (Eq. 6) and inter-frame unifor-
mity (IFU, Eq. 7). Skewness indicates the asymmetry found
in a distribution and can be used to deduce whether a distri-
bution is showing a general increase or decrease in value over
time. Inter-frame uniformity (IFU) as expressed in Eq. 7 is
a measure of adjacent sample similarity within time-ordered
data. It is expressed as the scaled L2 norm (Eq. 7) of the
sequence y where sequence y is formed by taking the abso-
lute difference between adjacent samples within sequence x ,
yt = |xt − xt+1|. Sequence y is normalised by its sum before
being input into Eq. 7. IFU returns values within the range
[0, 1] where 0 and 1 represent non-uniform, and uniform
changes over time, respectively. This particular measure of
uniformity was designed to be sensitive to sudden change in
value over time and is therefore intended to be suited towards
highlighting more abrupt changes in time-ordered data.

Skewness = E(x − μ)3

σ 3 (6)

IFU = |y|2√(T − 1) − 1√
(T − 1) − 1

(7)

It was observed that different spatial regions in frame
depicted different behaviour, and therefore we spatially split

each video into M × N non-overlapping sub-regions and
apply the aforementioned method to each. Each cell is rep-
resented by twenty values that describe the appearance and
changes in appearance over time. We generate twenty his-
tograms, one for each feature, using values taken from each
cell within the M × N grid. Through empirical analysis we
found that using logarithmically distributed histogram bins
within the range of [0, 1] provided the best performance.
Histograms representing skewness are bounded between
[−1.4, 1.4] and the bins are logarithmically, and symmet-
rically distributed around zero such that bin spaces are closer
at values closer to zero.

In the case of surveillance footage, failure to remove back-
ground information may lead to the description of landmarks
as opposed to crowd dynamics. TwoGLCMs generated adja-
cent in time will have a very similar composition as static
objects will introduce the same information in both matri-
ces. To remove static information that typically corresponds
to background information, we subtract adjacent GLCMS,
Mt − M(t−1) and threshold all values less than 0 where t
represents the frame being analysed. This approach comes
at a near negligible computational cost and offers robustness
to minor translational camera motion due to the spatially
unconstrained nature co-occurrence matrices.

4 Tested data

Thegoal of our research is to provide a computationalmethod
that can aid CCTV operatives at detecting scenes that exhibit
either violent or abnormal behaviour. In this section we out-
line four datasets and describe their attributes. As a brief
description of purpose, the CF-Violence and Violent Flows
datasets are used to evaluate the ability of the proposed
method at detecting violent behaviour, whereas the UMN
and UCF Crowd Abnormality datasets are used to evaluate
the ability of analysing more general crowd behaviour.

4.1 CF-violence dataset

Weobtained real-life surveillance footage from a local police
force that showed either violent or non-violent behaviour
within city centre locations. Experiments performed on this
data will provide a realistic understanding of the applica-
bility of each tested method in a real-world scenario. We
obtained 13 samples of violent behaviour and 63 samples of
general behaviour. The violent scenes can be separated into
two distinct classes of high and low based on the partici-
pant population. Only 4 of the 13 samples can be considered
to have a high number of participants. Video resolutions
range between 320 × 240 and 640 × 480, and all videos
were recorded at a de-interlaced frame rate of six frames
per second. Surveillance cameras are typically placed at a
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Fig. 1 Examples frames taken from the Violent Flows crowd violence
dataset

Fig. 2 Examples frames taken from the Web Crowd Abnormality
dataset

high altitude in order to maximise viewshed. The elevated
height increases a cameras exposure to high wind speeds
which causes the camera to shake and capture spatially unsta-
ble footage; this can cause issues when trying to identify
corresponding features between adjacent frames. All real-
world footage is stabilized before subsequent analysis using
the state-of-the-art method stabilization method proposed by
Grundmann et al. [14].

4.2 Violent Flows dataset

The Violent Flows dataset [17] was created for the sole pur-
pose of evaluating crowd violence classification methods; it
is a relatively new dataset and is not widely tested. There
are 123 instances of both violent and non-violent data sam-
ples available from footage uploaded to video media hosting
websites. The violent footage containsmany samples that are
visually similar to those found in real-world data, and it is
therefore suitable for evaluating the violence classification
properties of our proposed method (Fig. 1).

4.3 UCF web crowd abnormality dataset

The UCF web crowd abnormality dataset consists of 20
videos depicting either normal or abnormal crowd beha-
viour [26]. Abnormal data are classified as panic, clash or
fight scenarios. Normal samples can be described as showing
either crowds walking in an urban environment or pedestri-
ans running in a marathon. The dataset has been obtained
from various media hosting websites and of the 20 avail-
able sequences, 12 are normal and 8 abnormal. Footage
is recorded at 24 frames per second with a resolution of
640 × 480. Image examples of the web crowd abnormality
dataset can be seen in Fig. 2.

Fig. 3 Examples frames taken from the UMN Unusual crowd dataset

4.4 UMN crowd abnormality dataset

The UMN unusual crowd activity dataset [26] is a synthetic
dataset that depicts sparsely populated areas. Normal crowd
activity is observed until a specified point in time where
behaviour rapidly evolves into an escape scenariowhere each
individual runs out of camera view to simulate panic. The
dataset is comprised of 11 separate video samples that start
by depicting normal behaviour before changing to abnormal.
The panic scenario is filmed in three different locations, one
indoors and two outdoors. All footage is recorded at a frame
rate of 30 frames per second at a resolution of 640 × 480
using a static camera (Fig. 3).

5 Results

A classification label is generated for each video frame in
order to provide a continuous activity feed usable in CCTV
observation scenarios. This is achieved by classifying a
description vector computed using the previous n frames in
sequence, by default we assign n to be equal to the number
of frames per second. For the generation of the grey level
co-occurrence matrix we assign Ng = 32. The parameters
(θ, d) are assigned as (0, 1), see Sect. 5.1 for an explanation
regarding the choice of these parameters. M and N , which
specify frame sub-division used to encode spatial informa-
tion, are assigned the value of 4, Sect. 5.2 discusses the effects
of using different values for M and N .

All experimentswere conducted using k-fold cross valida-
tion where data are split into k partitions with k−1 partitions
being used for training a random forest classifier [5]. The
remaining partition is used for testing; the random forest is
composed of 50 trees. The parameter k is assigned a value
of 5, 5, 2 and 2 when processing the CF-Violence, Violent
Flows, UMN and Web Abnormality datasets, respectively.
We perform each experiment ten times and report the aver-
age result to reduce any variability introduced by random
sampling during cross validation. As stated previously, we
extract features such that each frame in a sequence is repre-
sented by a single vector, we do not allow features extracted
from a single source video to be placed in both training and
testing partitions at the same time, as features extracted from
any single video are likely to belong to the same distribu-
tion and may lead to over-fitting. We present results using
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Fig. 4 Classification performance achieved by each temporal feature
type

Fig. 5 Classification performance achieved by each texture feature
type

receiver operating characteristic (ROC) curves, a common
way to summarise these curves is to report area under the
curve. Area under ROC dictates the discrimination perfor-
mance between binary classes, a value of 1 indicates perfect
discrimination. Our method was implemented using Python
and the Skimage library, and we perform all experiments

using an Intel i7-4790 at 3.6GHz processor. Given a tem-
poral window size n of 24, and a resolution of 640 × 480,
our method operates at 76.92 frames per second, or 0.013
seconds per frame.

We determine the effectiveness of each individual tex-
ture and temporal feature type by omitting all other features
during classification (Figs. 4 and 5).Decomposing the impor-
tance of temporal features we find that the measure of
Intra-frame Uniformity is highly descriptive (Fig. 4) when
applied to the two datasets whose abnormal class contains
only violent samples, these being the CF-Violence and Vio-
lent Flows datasets. Looking at the average IFU values
returned by these datasets, we find that the appearance of
violent scenes within the Violent Flows dataset change in a
less uniform manner over time (Table 1). We also observe
that appearance of scenes in the CF-Violence dataset, as
represented by ASM and Homogeneity measures, exhibits
the same property. Given this observation, we formulated an
additional experiment to deduce whether or not a lower IFU
is indicative of violent behaviour when compared to normal
behaviour. The Web Abnormality dataset contains examples
of violence within the Abnormal class, we have separated
all non-violent abnormal scenes to create two new binary
datasets, these are Violent or Normal (VoN), and Violent or
Abnormal (VoA), the latter differs in that the Abnormal class
is composed of the non-violent abnormal samples from the
Web Abnormality dataset. We observe that the IFU measure
reported across all appearance features for bothVoNandVoA
(Table 1) is less for scenes of violence, this suggests that vio-
lence has a greater nonlinear change in appearance over time
when compared to non-violence. Continuing the IFU anal-
ysis, we find that scenes of abnormality as displayed in the
UMN dataset have a greater IFU than scenes of normality,
this highlights that a low IFU is not indicative of all types of
abnormal behaviour.

We report state-of-the-art classificationperformancewhen
testing our privately sourced real-world CCTV dataset. We
observe a difference of 0.0882 in ROC score between our
method and the next best tested approach (Table 2). When
testing the UMN dataset our proposed approach achieves
comparable classification ability to other state-of-the-art

Table 1 Inter-frame uniformity
measure difference between
scenes of abnormality and
normality for each texture
measure outlined in Sect. 3

IFU Dissimilarity Correlation Homogeneity ASM Contrast

CF-Violence 0.000781146 0.0161029 −0.00154672 −0.0137449 0.0105682

Web abnormality −0.00434525 −0.00614079 −0.00603542 −0.0140028 −0.00323114

UMN 0.00240629 0.00131867 0.00207164 0.00343199 0.00591058

Violent Flows −0.00723042 −0.00840384 −0.00728228 −0.028443 −0.00750538

VoA −0.00563025 −0.00444586 −0.00483273 −0.00330466 −0.00513838

VoN −0.00784559 −0.00890479 −0.00903995 −0.0160573 −0.00642569

Negative values indicate normal scenes have a greater value than abnormal scenes, indicating that scenes of
normal behaviour are temporally more uniform
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Table 2 CF-Violence
classification score

Method AUC

Proposed 0.9782

ViF [17] 0.80

OViF [11] 0.76

Fast fight [13] 0.89

Table 3 UMNclassification performance scores including state-of-the-
art results

Method AUC

Proposed 0.9956

Optical flow [26] 0.84

SF [26] 0.96

MDT [21] 0.9965

Chaotic invariants [36] 0.99

Biswas [4] 0.9838 (average)

Table 4 UCF Web abnormality
crowd dataset classification
performance scores including
state-of-the-art results

Method AUC

Proposed 0.8218

SF [26] 0.73

Optical flow [26] 0.66

Table 5 Violent Flows dataset classification performance scores
including state-of-the-art results

Method Accuracy (±) AUC

Proposed 86.03 ± 4.25% 0.9403

Fast fight [13] 69.40 ± 5.0 % 0.7500

ViF [17] 81.30 ± 0.21 % 0.8500

OViF [11] 76.80 ± 3.90 % 0.8047

Holistic features [24] 85.53 ± 0.17 % –

MoSIFT [37] 83.42 ± 8.03 % 0.8751

MoSIFT (KDE/sparse coding) [37] 89.05 ± 3.26 % 0.9357

methods (Table 3)whenusing a temporalwindowsize greater
than 64 frames in length (Fig. 9).We find that the rate of clas-
sification increases as the temporal window length increases.
It is believed that as the panic situation winds down, the key
characteristics of panic are less prominent, therefore, increas-
ing the temporal window size prolongs the time in which the
dominant characteristics remain in the decision making pro-
cess.

Weobserve that themeasure ofmean appearance over time
is the a weakest descriptor when applied to the Web Abnor-
mality and Violent Flows datasets (Fig. 4). The appearance
of crowds presented in these datasets varies a lot as each sam-
ple is typically recorded from a unique camera source. We
hypothesise that due to the lack of a common capture source
across samples, strong visual correspondences in appearance
between samples is less likely to occur. Both the UMN and

Fig. 6 ROC curves for each tested dataset

CF-Violence dataset usefixed cameraswhich record different
crowd behaviours within the same environment. Given that
the environment can guide the flow/behaviour of a crowd,
then typical crowd compositions emerge during scenes of
normality, in which case the mean appearance offers high
classification ability as inter-sample visual similarity is more
likely to occur between samples that depict normality.

We report state-of-the-art results on the UCF dataset
(Table 4). Analysing the ROC curves for each tested dataset
we find that the UCF dataset, for our method at least, is the
most challenging (Fig. 6). This challenge can potentially be
attributed to the small amount of data available in the dataset.
We conducted evaluation on the Violent Flows dataset using
the approach outlined in the seminal paper by Hassner et
al. [17]. We demonstrate that our method offers compara-
ble performance with existing methods (Table 5). We also
found that the only alternative method to report a greater
classification accuracy than our approach does not operate
in real-time [13], unlike our own approach which does boast
real-time performance.

5.1 Pixel pair relationship

As stated in Sect. 3, a grey level co-occurrence matrix is
generated by counting pixel pair occurrences given a rela-
tionship defined by parameters (θ, d). Wewant to investigate
the effects of (θ, d) to determine whether or not a common
value exists that offers good performance across different
data types. We evaluate the effects of these parameters by
performing multiple experiments with a range of values. Our
experiments use each combination that can be composed
from one of three orientation configurations and one of five
different distance values, this provides 15 different exper-
iments. The first orientation configuration is a set of eight
orientation values spaced π/4 radians apart, the second set
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(a) (b)

(c) (d)

Fig. 7 Graphs show the effects of pixel pair relationship parameters: a
CF-Violence, b Violent Flows, c UCF web abnormality, d UMN Panic

contains four orientation values spaced π/2 radians apart.
The final orientation set contains a single value of 0. The five
distance values are a sequence of integers that double in size
starting from 1. The results of this experiment are shown in
Fig. 7. Across all tested datasets we observe a common trend
in that orientation has no significant impact on descriptive
ability. We conducted a second experiment in which we ran-
domly rotated each cell by either 0, 90, 180 or 360 degrees,
even in this case we found no significant difference in classi-
fication performancewhen using each of the three orientation
compositions.

When analysing the results from the Web Abnormal-
ity, Violent Flows and CF-Violence datasets, we observe a
negative correlation between classification performance rep-
resented by area under ROC and parameter d; the UMN
datasets show a less uniform relationship. We hypothesis
this pattern occurs due to the distance between interacting
entities within each video; for instance, the crowds found in
the CF-Violence and Violent Flows dataset can be described
as densely populated and as a result the pedestrians have a
close proximity to one another. In contrast to this, the UMN
dataset is sparsely populated and the distance between mov-
ing entities is much larger. In the close proximity scenario,
a small distance value is better suited towards identifying
meaningful relationships between two interacting entities,
conversely, in a sparse scenario a small value for d may not
be great enough to relate two distant entities, in which case
a greater value of d should be chosen. Ultimately we find
that the parameter pair (0, 1) provides the best performance
across all datasets.

5.2 Frame split

In Sect. 3, we suggest splitting a scene into sub-regions
referred to as cells, we then extract a description for each cell

Fig. 8 The effect on accuracy of using different values for M and N
where M = N

and aggregate them to form a global descriptor of a scene.
This is performed as a scene may consist of different local
behaviours that cannot be strongly represented when pro-
cessing the entire scene as a single cell (M = N = 1). The
Violent Flows dataset seesmaximal classification scorewhen
N = M = 2. When the scene decomposition becomes too
fine M = N > 8 the classification performance drops, a
similar trend occurs when analysing the Web Abnormality
dataset. We hypothesise that a larger cell size is more suit-
able for describing the global characteristics of behaviour
in a dense crowd. Using a fine grid results in the descrip-
tion of small components such as individuals, in which case
the characteristics encoding the effect of an individual on
a crowd are less explicitly encoded as the local cell aggre-
gation process used to form the global descriptor discards
spatial locality of behaviour, and therefore any relationship
between an action and its associated reaction is also dis-
carded. Larger cell sizes will encapsulate multiple people
and therefore describe the interaction, both action and reac-
tion. TheCF-Violence dataset does not follow the same trend,
it shows a positive correlation between grid size and classi-
fication score, suggesting that in this case, small individual
components of a scene are sufficient enough to describe vio-
lent behaviour. This is reasonable when you consider the
contrast between normal and abnormal behaviour during the
NTE, for instance, violent acts such as kicking or punching
are vastly dissimilar to the typical types of normal behaviour;
therefore, smaller cells that encapsulate individual actions
are still capable of encoding abnormal behaviour as its the
action, not the interaction that matters. In contrast, the dif-
ference between the individual actions of people within the
Violent Flows dataset during violent and non-violent scenes
is less clear, and so the interactions are important, and as
stated prior, encoding interactions require larger observation
windows (Fig. 8).
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Fig. 9 The effect on accuracy of using different window sizes n

5.3 Window length

In this subsection we will investigate the effects of parameter
n to determine if the description of crowd behaviour is best
formulated using either short- or long-term temporal dynam-
ics.We perform classification using descriptors formed using
the following values of n: 6, 12, 24, 32, 64 and 128. We find
that all datasets favour larger window sizes (Fig. 9), sug-
gesting that the distinction between scenes of normality and
abnormality is made more clear over long periods. Although
each dataset has its preferentialwindow length, it is important
to note that shortwindowsizes still offer reasonably goodper-
formance across all datasets.When transitioning fromnormal
to abnormal behaviour, the amount of time required for the
majority of the feature vector to be composed of informa-
tion from abnormal behaviour will be greater the larger the
observation window. Assuming that class transitions are not
represented by the descriptor, the worst case for classifying
abnormal behaviour will see a delay of at most n frames.
Therefore, shorter observation windows are more appropri-
ate for use in a real-time system as it will allows for more
instantaneous updates regarding the dynamics of the scene.

5.4 Data quality analysis

As discussed in the introduction (Sect. 1), the quality of
CCTV recorded footage can often be poor. It is useful to

investigate the effects of image quality on the ability of com-
puter based methods to operate, as this information can be
used to determine, and resolve weaknesses in a system. We
test for correlation between measures of image quality and a
binary value indicatingwhether or not a samplewas correctly
classified. Given that we remove background elements when
forming our descriptor we perform background subtraction
before computing image quality measures to avoid drawing
spurious correlations between our description of the crowd
and quality of the background. To remove the background
we perform frame differencing and apply a threshold of 0.04
to remove all static regions. Using the point bi-serial corre-
lation measure we find that in most cases, each measure of
image quality displays no significant correlation (p > 0.05,
Table 6). When analysing the Web Abnormality data we
expected to find a negative correlation between noise and
prediction; however, we observe the opposite. We hypothe-
sise that the measure of noise is incorrectly measuring the
features of a crowd as noise given that certain crowds can
appear visually noisy. In addition to this we observe that
Image Complexity and Contrast Factor are positively corre-
lated suggesting that strong structure is a key requirement for
our proposed method to effectively analyse the Web Abnor-
mality dataset.

6 Conclusion and future work

In this paper we have utilised GLCM texture features that are
typically used in crowd density estimation and applied tem-
poral encoding to create an effective method that describes
crowd dynamics. We have demonstrated that the proposed
method is highly effective at discriminating between scenes
of normal and abnormal behaviour, and that our approach
operates in real time. We have highlighted that violent
behaviour typically holds a less uniform rate of change
over time when compared to other types of typical crowd
behaviour, further analysis must be conducted to identify
whether or not this property exists given alternative mea-
surements of crowd behaviour.We have provided an in-depth
evaluation of the parameter effects present in our proposed

Table 6 Correlation between each measure of quality and the binary label indicating whether or not a sample was correctly classified

Measure Web abnormality UMN Violent Flows CF-Violence

r p r p r p r p

Sharpness [2] 0.038748 0.119578 −0.0829886 0.00614006 −0.0144083 0.432805 0.0106051 0.576142

Noise [18] 0.155387 3.43226e−10 −0.064551 0.0331752 −0.00693547 0.705759 0.00140241 0.941071

Contrast Factor [25] 0.113564 4.76052e−06 0.0311274 0.304762 −0.002687 0.883704 0.0159766 0.399675

Colourfulness [16] 0.0612761 0.0137814 0.0243059 0.422963 −0.00202095 0.912396 0.000616108 0.974092

Image Complexity [20] 0.145287 4.48378e−09 −0.0778508 0.010169 −0.00640437 0.727356 0.00216641 0.909083
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method that should provide insight into the most suitable
choice of parameter values; however, further research can be
conducted to determine a method of adaptively choosing the
optimal parameters given some data. We would also like to
apply computer vision-based violence detection systems in
the real world to evaluate their ability at reducing the impact
of violence-related injuries by assisting CCTV observation
personnel.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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