184 research outputs found

    A multipurpose experimental facility for advanced X-ray Spectrometry applications

    Get PDF
    Ponencia presentada en la European Conference on X-Ray Spectrometry (EXRS). 2014Motivation, Ultra High Vacuum Chamber (UHVC) project: To support/enhance the training of scientists/engineers from developing countries in the operation of synchrotron radiation instrumentation; To provide beam time access for R&D projects and hands-on training in SR-XRS based techniques; To promote networking and knowledge sharing; To increase the quality and the competitiveness of the developing countries to apply beam time proposals at SR facilities; To contribute in the further development of XRS techniques in applications with socioeconomicalrelevance (characterization of energy storage/conversion materials, environmental, biological and biomedical applications)Fil: Leani, Juan José. Universidad Nacional de Córdoba. Facultad de Matemåtica, Astronomía y Física; Argentina.Fil: Leani, Juan José. Nuclear Science and Instrumentation Laboratory, IAEA Laboratories; Austria.Física Atómica, Molecular y Química (física de åtomos y moléculas incluyendo colisión, interacción con radiación, resonancia magnética, Moessbauer Efecto.

    DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects

    Get PDF
    Rationale: Primary ciliary dyskinesia (PCD) is characterized by recurrent airway infections and randomization of left-right body asymmetry. To date, autosomal recessive mutations have only been identified in a small number of patients involving DNAI1 and DNAH5, which encode outer dynein arm components. Methods: We screened 109 white PCD families originating from Europe and North America for presence of DNAH5 mutations by haplotype analyses and/or sequencing. Results: Haplotype analyses excluded linkage in 26 families. In 30 PCD families, we identified 33 novel (12 nonsense, 8 frameshift, 5 splicing, and 8 missense mutations) and two known DNAH5 mutations. Weobserved clustering of mutationswithin five exons harboring 27 mutant alleles (52%) of the 52 detected mutant alleles. Interestingly, 6 (32%) of 19 PCD families with DNAH5 mutations from North America carry the novel founder mutation 10815delT. Electron microscopic analyses in 22 patients with PCD with mutations invariably detected outer dynein arm ciliary defects. High-resolution immunofluorescence imaging of respiratory epithelial cells from eight patients with DNAH5 mutations showed mislocalization of mutant DNAH5 and accumulation at the microtubule organizing centers. Mutant DNAH5 was absent throughout the ciliary axoneme in seven patients and remained detectable in the proximal ciliary axoneme in one patient carrying compound heterozygous splicing mutations at the 3â€Č-end (IVS75-2A>T, IVS76+5G>A). In a preselected subpopulation with documented outer dynein arm defects (n = 47), DNAH5 mutations were identified in 53% of patients. Conclusions: DNAH5 is frequently mutated in patients with PCD exhibiting outer dynein arm defects and mutations cluster in five exons

    MNS1 Is Essential for Spermiogenesis and Motile Ciliary Functions in Mice

    Get PDF
    During spermiogenesis, haploid round spermatids undergo dramatic cell differentiation and morphogenesis to give rise to mature spermatozoa for fertilization, including nuclear elongation, chromatin remodeling, acrosome formation, and development of flagella. The molecular mechanisms underlining these fundamental processes remain poorly understood. Here, we report that MNS1, a coiled-coil protein of unknown function, is essential for spermiogenesis. We find that MNS1 is expressed in the germ cells in the testes and localizes to sperm flagella in a detergent-resistant manner, indicating that it is an integral component of flagella. MNS1–deficient males are sterile, as they exhibit a sharp reduction in sperm production and the remnant sperm are immotile with abnormal short tails. In MNS1–deficient sperm flagella, the characteristic arrangement of “9+2” microtubules and outer dense fibers are completely disrupted. In addition, MNS1–deficient mice display situs inversus and hydrocephalus. MNS1–deficient tracheal motile cilia lack some outer dynein arms in the axoneme. Moreover, MNS1 monomers interact with each other and are able to form polymers in cultured somatic cells. These results demonstrate that MNS1 is essential for spermiogenesis, the assembly of sperm flagella, and motile ciliary functions

    Clinical and Immunological Phenotype of Patients With Primary Immunodeficiency Due to Damaging Mutations in NFKB2

    Get PDF
    Non-canonical NF-ÎșB-pathway signaling is integral in immunoregulation. Heterozygous mutations in NFKB2 have recently been established as a molecular cause of common variable immunodeficiency (CVID) and DAVID-syndrome, a rare condition combining deficiency of anterior pituitary hormone with CVID. Here, we investigate 15 previously unreported patients with primary immunodeficiency (PID) from eleven unrelated families with heterozygous NFKB2-mutations including eight patients with the common p.Arg853* nonsense mutation and five patients harboring unique novel C-terminal truncating mutations. In addition, we describe the clinical phenotype of two patients with proximal truncating mutations. Cohort analysis extended to all 35 previously published NFKB2-cases revealed occurrence of early-onset PID in 46/50 patients (mean age of onset 5.9 years, median 4.0 years). ACTH-deficiency occurred in 44%. Three mutation carriers have deceased, four developed malignancies. Only two mutation carriers were clinically asymptomatic. In contrast to typical CVID, most patients suffered from early-onset and severe disease manifestations, including clinical signs of T cell dysfunction e.g., chronic-viral or opportunistic infections. In addition, 80% of patients suffered from (predominately T cell mediated) autoimmune (AI) phenomena (alopecia > various lymphocytic organ-infiltration > diarrhea > arthritis > AI-cytopenia). Unlike in other forms of CVID, auto-antibodies or lymphoproliferation were not common hallmarks of disease. Immunophenotyping showed largely normal or even increased quantities of naĂŻve and memory CD4+ or CD8+ T-cells and normal T-cell proliferation. NK-cell number and function were also normal. In contrast, impaired B-cell differentiation and hypogammaglobinemia were consistent features of NFKB2-associated disease. In addition, an array of lymphocyte subpopulations, such as regulatory T cell, Th17-, cTFH-, NKT-, and MAIT-cell numbers were decreased. We conclude that heterozygous damaging mutations in NFKB2 represent a distinct PID entity exceeding the usual clinical spectrum of CVID. Impairment of the non-canonical NF-ÎșB pathways affects function and differentiation of numerous lymphocyte-subpopulations and thus causes a heterogeneous, more severe form of PID phenotype with early-onset. Further characteristic features are multifaceted, primarily T cell-mediated autoimmunity, such as alopecia, lymphocytic organ infiltration, and in addition frequently ACTH-deficiency

    Characterization of the Clinical and Immunologic Phenotype and Management of 157 Individuals with 56 Distinct Heterozygous NFKB1 Mutations

    Get PDF
    Background: An increasing number of NFKB1 variants are being identified in patients with heterogeneous immunologic phenotypes. Objective: To characterize the clinical and cellular phenotype as well as the management of patients with heterozygous NFKB1 mutations. Methods: In a worldwide collaborative effort, we evaluated 231 individuals harboring 105 distinct heterozygous NFKB1 variants. To provide evidence for pathogenicity, each variant was assessed in silico; in addition, 32 variants were assessed by functional in vitro testing of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-ÎșB) signaling. Results: We classified 56 of the 105 distinct NFKB1 variants in 157 individuals from 68 unrelated families as pathogenic. Incomplete clinical penetrance (70%) and age-dependent severity of NFKB1-related phenotypes were observed. The phenotype included hypogammaglobulinemia (88.9%), reduced switched memory B cells (60.3%), and respiratory (83%) and gastrointestinal (28.6%) infections, thus characterizing the disorder as primary immunodeficiency. However, the high frequency of autoimmunity (57.4%), lymphoproliferation (52.4%), noninfectious enteropathy (23.1%), opportunistic infections (15.7%), autoinflammation (29.6%), and malignancy (16.8%) identified NF-ÎșB1-related disease as an inborn error of immunity with immune dysregulation, rather than a mere primary immunodeficiency. Current treatment includes immunoglobulin replacement and immunosuppressive agents. Conclusions: We present a comprehensive clinical overview of the NF-ÎșB1-related phenotype, which includes immunodeficiency, autoimmunity, autoinflammation, and cancer. Because of its multisystem involvement, clinicians from each and every medical discipline need to be made aware of this autosomal-dominant disease. Hematopoietic stem cell transplantation and NF-ÎșB1 pathway-targeted therapeutic strategies should be considered in the future.info:eu-repo/semantics/publishedVersio

    Nephronophthisis

    Get PDF
    Nephronophthisis (NPH) is an autosomal recessive disease characterized by a chronic tubulointerstitial nephritis that progress to terminal renal failure during the second decade (juvenile form) or before the age of 5 years (infantile form). In the juvenile form, a urine concentration defect starts during the first decade, and a progressive deterioration of renal function is observed in the following years. Kidney size may be normal, but loss of corticomedullary differentiation is often observed, and cysts occur usually after patients have progressed to end-stage renal failure. Histologic lesions are characterized by tubular basement membrane anomalies, tubular atrophy, and interstitial fibrosis. The infantile form is characterized by cortical microcysts and progression to end-stage renal failure before 5 years of age. Some children present with extrarenal symptoms: retinitis pigmentosa (Senior-LÞken syndrome), mental retardation, cerebellar ataxia, bone anomalies, or liver fibrosis. Positional cloning and candidate gene approaches led to the identification of eight causative genes (NPHP1, 3, 4, 5, 6, 7, 8, and 9) responsible for the juvenile NPH and one gene NPHP2 for the infantile form. NPH and associated disorders are considered as ciliopathies, as all NPHP gene products are expressed in the primary cilia, similarly to the polycystic kidney disease (PKD) proteins

    DNAAF1 links heart laterality with the AAA+ ATPase RUVBL1 and ciliary intraflagellar transport

    Get PDF
    DNAAF1 (LRRC50) is a cytoplasmic protein required for dynein heavy chain assembly and cilia motility, and DNAAF1 mutations cause primary ciliary dyskinesia (PCD; MIM 613193). We describe four families with DNAAF1 mutations and complex congenital heart disease (CHD). In three families, all affected individuals have typical PCD phenotypes. However, an additional family demonstrates isolated CHD (heterotaxy) in two affected siblings, but no clinical evidence of PCD. We identified a homozygous DNAAF1 missense mutation, p.Leu191Phe, as causative for heterotaxy in this family. Genetic complementation in dnaaf1-null zebrafish embryos demonstrated the rescue of normal heart looping with wild-type human DNAAF1, but not the p.Leu191Phe variant, supporting the conserved pathogenicity of this DNAAF1 missense mutation. This observation points to a phenotypic continuum between CHD and PCD, providing new insights into the pathogenesis of isolated CHD. In further investigations of the function of DNAAF1 in dynein arm assembly, we identified interactions with members of a putative dynein arm assembly complex. These include the ciliary intraflagellar transport protein IFT88 and the AAA+ (ATPases Associated with various cellular Activities) family proteins RUVBL1 (Pontin) and RUVBL2 (Reptin). Co-localization studies support these findings, with the loss of RUVBL1 perturbing the co-localization of DNAAF1 with IFT88. We show that RUVBL1 orthologues have an asymmetric left-sided distribution at both the mouse embryonic node and the Kupffer’s vesicle in zebrafish embryos, with the latter asymmetry dependent on DNAAF1. These results suggest that DNAAF1-RUVBL1 biochemical and genetic interactions have a novel functional role in symmetry breaking and cardiac development
    • 

    corecore