15 research outputs found

    PAH in the laboratory and interstellar space

    Get PDF
    The theory that polycyclic aromatic hydrocarbons (PAHs) are a constituent of the interstellar medium, and a source of the IR emission bands at 3.3, 6.2, 7.7, 8.6, and 11.3 microns is being studied using PAH containing acid insoluble residue of the Orgueil CI meteorite and coal tar. FTIR spectra of Orgueil PAH material that has undergone thermal treatment, and a solvent insoluble fraction of coal tar that has been exposed to hydrogen plasma are presented. The UV excided luminescence spectrum of a solvent soluble coal tar film is also shown. Comparison of the lab measurements with observations appears to support the interstellar PAH theory, and shows the process of dehydrogenation expected to take place in the interstellar medium

    Ion bombardment experiments suggesting an origin for organic particles in pre-cometary and cometary ices

    Get PDF
    During the Giotto and Vega encounters with Comet Halley both organic particles called CHON and energetic ions were detected. The acceleration of ions to hundreds of keV in the vicinity of the bow shock and near the nucleus may be a demonstration of a situation occurring in the early solar system (perhaps during the T Tauri stage) that led to the formation of organic particles only now released. Utilizing a Van de Graaff accelerator and a target chamber having cryogenic and mass spectrometer capabilities, frozen gases were bombarded at 10 K with 175 keV protons with the result that fluffy solid material remains after sublimation of the ice. Initial experiments were carried out with a gas mixture in parts of 170 carbon monoxide, 170 argon, 25 water, 20 nitrogen, and 15 methane formulated to reflect an interstellar composition in experiments involving the freezing out of the products of a plasma. The plasma experiments resulted in a varnish-like film residue that exhibited luminescence when excited with ultraviolet radiation, while the ion bombardment created particulate material that was not luminescent

    Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

    Get PDF
    Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development

    The genetics of the mood disorder spectrum:genome-wide association analyses of over 185,000 cases and 439,000 controls

    Get PDF
    Background Mood disorders (including major depressive disorder and bipolar disorder) affect 10-20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Despite their diagnostic distinction, multiple approaches have shown considerable sharing of risk factors across the mood disorders. Methods To clarify their shared molecular genetic basis, and to highlight disorder-specific associations, we meta-analysed data from the latest Psychiatric Genomics Consortium (PGC) genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; non-overlapping N = 609,424). Results Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More genome-wide significant loci from the PGC analysis of major depression than bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell-types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment – positive in bipolar disorder but negative in major depressive disorder. Conclusions The mood disorders share several genetic associations, and can be combined effectively to increase variant discovery. However, we demonstrate several differences between these disorders. Analysing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Microbial electrosynthesis - Revisiting the electrical route for microbial production

    No full text
    Microbial electrocatalysis relies on microorganisms as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well known in this context; both use microorganisms to oxidize organic or inorganic matter at an anode to generate electrical power or H 2, respectively. The discovery that electrical current can also drive microbial metabolism has recently lead to a plethora of other applications in bioremediation and in the production of fuels and chemicals. Notably, the microbial production of chemicals, called microbial electrosynthesis, provides a highly attractive, novel route for the generation of valuable products from electricity or even wastewater. This Review addresses the principles, challenges and opportunities of microbial electrosynthesis, an exciting new discipline at the nexus of microbiology and electrochemistry. © 2010 Macmillan Publishers Limited. All rights reserved

    Effects of the Low-Temperature Transitions of Confined Water on the Structures of Isolated and Cytoplasmic Proteins

    No full text

    Chemicals from Hemicelluloses: A Review

    No full text

    The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls

    No full text
    Background: Mood disorders (including major depressive disorder and bipolar disorder) affect 10% to 20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Multiple approaches have shown considerable sharing of risk factors across mood disorders despite their diagnostic distinction.Methods: To clarify the shared molecular genetic basis of major depressive disorder and bipolar disorder and to highlight disorder-specific associations, we meta-analyzed data from the latest Psychiatric Genomics Consortium genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; nonoverlapping N = 609,424).Results: Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More loci from the Psychiatric Genomics Consortium analysis of major depression than from that for bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single-episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment-the relationship is positive in bipolar disorder but negative in major depressive disorder.Conclusions: The mood disorders share several genetic associations, and genetic studies of major depressive disorder and bipolar disorder can be combined effectively to enable the discovery of variants not identified by studying either disorder alone. However, we demonstrate several differences between these disorders. Analyzing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum

    Advances in Genetic Engineering of Microalgae

    No full text
    Hallmann A. Advances in Genetic Engineering of Microalgae. In: Grand Challenges in Algae Biotechnology. Grand Challenges in Biology and Biotechnology. Cham: Springer International Publishing; 2020: 159-221
    corecore