66 research outputs found

    Effect of Human Burn Wound Exudate on Pseudomonas aeruginosa Virulence.

    Get PDF
    Burn wound sepsis is currently the main cause of morbidity and mortality after burn trauma. Infections by notorious pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus, and Acinetobacter baumannii impair patient recovery and can even lead to fatality. In this study, we investigated the effect of burn wound exudates (BWEs) on the virulence of those pathogens. BWEs were collected within 7 days after burn trauma from 5 burn patients. We first monitored their effect on pathogen growth. In contrast to A. baumannii and S. aureus, P. aeruginosa was the only pathogen able to grow within these human fluids. Expression of typical virulence factors such as pyocyanin and pyoverdine was even enhanced compared the levels seen with standard laboratory medium. A detailed chemical composition analysis of BWE was performed, which enabled us to determine the major components of BWE and underline the metabolic modifications induced by burn trauma. These data are essential for the development of an artificial medium mimicking the burn wound environment and the establishment of an in vitro system to analyze the initial steps of burn wound infections. IMPORTANCE Microbial infection of severe burn wounds is currently a major medical challenge. Of the infections by bacteria able to colonize such injuries, those by Pseudomonas aeruginosa are among the most severe, causing major delays in burn patient recovery or leading to fatal issues. In this study, we investigated the growth properties of several burn wound pathogens in biological fluids secreted from human burn wounds. We found that P. aeruginosa strains were able to proliferate but not those of the other pathogens tested. In addition, burn wound exudates (BWEs) stimulate the expression of virulence factors in P. aeruginosa. The chemical composition analysis of BWEs enabled us to determine the major components of these fluids. These data are essential for the development of an artificial medium mimicking the burn wound environment and for in vitro analysis of the initial step in the development of burn wound infections

    Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of E. gallinarum and E. casseliflavus

    Get PDF
    The enterococci are Gram-positive lactic acid bacteria that inhabit the gastrointestinal tracts of diverse hosts. However, Enterococcus faecium and E. faecalis have emerged as leading causes of multidrug-resistant hospital-acquired infections. The mechanism by which a well-adapted commensal evolved into a hospital pathogen is poorly understood. In this study, we examined high-quality draft genome data for evidence of key events in the evolution of the leading causes of enterococcal infections, including E. faecalis, E. faecium, E. casseliflavus, and E. gallinarum. We characterized two clades within what is currently classified as E. faecium and identified traits characteristic of each, including variation in operons for cell wall carbohydrate and putative capsule biosynthesis. We examined the extent of recombination between the two E. faecium clades and identified two strains with mosaic genomes. We determined the underlying genetics for the defining characteristics of the motile enterococci E. casseliflavus and E. gallinarum. Further, we identified species-specific traits that could be used to advance the detection of medically relevant enterococci and their identification to the species level

    Quorum Sensing and Bacterial Social Interactions in Biofilms

    Get PDF
    Many bacteria are known to regulate their cooperative activities and physiological processes through a mechanism called quorum sensing (QS), in which bacterial cells communicate with each other by releasing, sensing and responding to small diffusible signal molecules. The ability of bacteria to communicate and behave as a group for social interactions like a multi-cellular organism has provided significant benefits to bacteria in host colonization, formation of biofilms, defense against competitors, and adaptation to changing environments. Importantly, many QS-controlled activities have been involved in the virulence and pathogenic potential of bacteria. Therefore, understanding the molecular details of quorum sensing mechanisms and their controlled social activities may open a new avenue for controlling bacterial infections

    Two Group A Streptococcal Peptide Pheromones Act through Opposing Rgg Regulators to Control Biofilm Development

    Get PDF
    Streptococcus pyogenes (Group A Streptococcus, GAS) is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3) have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG), and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp) and a metalloprotease (eep), supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1). These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide receptors across the Firmicute phylum

    RGG transcriptional regulators. Confirmation of their involvement in quorum-sensing phenomenon and identification of their targets.

    No full text
    The discovery of a genetic context – encoding a small hydrophobic peptide (SHP) and a transcriptional regulator belonging to the Rgg family (in nearly all streptococcal genomes) –, following by the study of one of this loci in S. thermophilus LMD-9, led to the hypothesis that the regulatory proteins Rgg in association with a putative pheromone SHP could define a novel quorum-sensing (QS) regulatory mechanism in Gram-positive bacteria. The first part of my PhD consisted to validate this hypothesis. For this purpose, we analyzed the SHP/Rgg system in all the steps that are commonly involved in QS mechanisms: (i) secretion of the putative pheromone, (ii) maturation of the pheromone, (iii) capture of the pheromone from the external environment at a threshold concentration, (iv) importation of the pheromone inside the cell and (v) interaction of the transcriptional regulator to the promoter regions of targeted genes. Experimentally, we focused on the so-called shp/rgg1358 locus of S. thermophilus LMD-9, which is the streptococcal species containing the largest number of shp/rgg pairs in its genome. By using genetic and biochemistry approaches, we uncovered a new QS mechanism that involves the pheromone SHP, the oligopeptide transporter AmiCDEF for the uptake of the pheromone and the transcriptional regulator Rgg for the control of target gene expression. Furthermore, we showed that the membrane protease Eep participates in the production of the mature pheromone, which has been identified by mass spectrometry. Once characterized, the second part of my PhD was to explore the functionality of this new QS system in other streptococcal strain or species, in order to determine if cross-reactivity phenomenon between streptococci can occur. By using heterologous expression in S. thermophilus LMD-9, we extended the functionality of the SHP/Rgg system to two pathogenic streptococcal species, i.e. S. agalactiae and S. mutans. The last part of my PhD consisted in identifying the regulon of all SHP/Rgg systems. Following the construction of a phylogenetic tree of the Rgg-like proteins in low GC Gram-positive bacteria, we identified 68 SHP/Rgg systems that we classified in three groups. Analyzing the promoter regions of all shp genes led to the identification of a putative Rgg DNA binding site specific to each SHP/Rgg group. An in silico approach was used to scan all sequenced streptococcal genomes for the three identified patterns. Whereas proximal target genes were detected for groups II and III, distal target genes were found in groups I and II. In addition, we uncovered that putative Rgg DNA binding sites can be localized in coding or non-coding region. Currently, validations are in progress. To sum-up, my PhD studies provided evidences that the Rgg proteins in association with small peptide pheromones define a new QS mechanism that seems to regulate the expression of distal and proximal genes in a species-dependent manner. Important insights should be obtained concerning a putative crosstalk among streptococci that involves the SHP/Rgg QS system. My studies may constitute a basis for the development of small peptides to optimize the use of S. thermophilus in dairy factories and reduce the virulence of pathogenic streptococci.La découverte d'un contexte génétique chez les streptocoques – codant un petit peptide hydrophobe (SHP) et un régulateur transcriptionnel appartenant à la famille Rgg –, suivi de l'étude d'un de ces loci chez S. thermophilus LMD-9, a conduit à l'hypothèse que les protéines régulatrices Rgg en association avec une phéromone putative SHP pourraient intervenir dans un mécanisme de type quorum-sensing (QS) chez les bactéries à Gram positif. La première partie de ma thèse a consisté à confirmer cette hypothèse sur le locus shp/rgg1358 de S. thermophilus LMD-9, espèce contenant le plus grand nombre de systèmes SHP/Rgg dans son génome. Pour ceci, les étapes impliquées dans un mécanisme de QS ont été étudiées : la sécrétion, la maturation et la détection à une concentration seuil de la phéromone, sa réimportation à l'intérieur de la cellule, son interaction avec un régulateur transcriptionnel et enfin l'interaction de la protéine régulatrice à l'ADN. Par l'utilisation d'approches génétiques et biochimiques, nous avons démontré l'existence d'un nouveau mécanisme de QS impliquant pour la première fois un régulateur transcriptionnel Rgg et une phéromone SHP, importée à l'intérieur de la cellule par le transporteur d'oligopeptides AmiCDEF. Le rôle de la protéase membranaire, Eep, a également été démontré dans la maturation de la phéromone, dont la forme mature a été déterminée par spectrométrie de masse et validée in vivo. Dans un second temps, nous avons exploré la fonctionnalité de ce nouveau mécanisme sur d'autres loci shp/rgg, dans le but d’étudier l'existence d’éventuels phénomènes de cross-talk entre les bactéries. L'étude de nouveaux loci, en système hétérologue chez S. thermophilus LMD-9, a permis d'étendre la fonctionnalité du mécanisme à deux systèmes SHP/Rgg de streptocoques pathogènes, à savoir S. agalactiae et S. mutans. En parallèle à ce travail de caractérisation, l'identification des régulons des systèmes SHP/Rgg a été entreprise. La construction d'un arbre phylogénétique des protéines Rgg-like a permis d'identifier 68 systèmes SHP/Rgg, que nous avons classés en trois groupes. L'analyse des régions promotrices des gènes shp a conduit à l'identification d'un site putatif de liaison des protéines Rgg à l'ADN spécifiques de chaque groupe SHP/Rgg. Une approche in silico a ensuite été menée afin de rechercher, dans les génomes séquencés de streptocoques, les gènes cibles putatifs. Alors que des cibles proximales ont été détectées pour les groupes II et III, des cibles distales ont été identifiées dans les groupes I et II. Actuellement, la validation de certaines cibles est en cours au laboratoire. A l'avenir, ce travail pourrait permettre le développement de petits peptides permettant d'optimiser l'utilisation de S. thermophilus en industries laitières et de réduire la virulence des streptocoques pathogènes

    Les régulateurs transcriptionnels Rgg. Confirmation de leur implication dans des phénomènes de quorum-sensing et identification de leurs cibles.

    No full text
    La découverte d'un contexte génétique chez les streptocoques codant un petit peptide hydrophobe (SHP) et un régulateur transcriptionnel appartenant à la famille Rgg , suivi de l'étude d'un de ces loci chez S. thermophilus LMD-9, a conduit à l'hypothèse que les protéines régulatrices Rgg en association avec une phéromone putative SHP pourraient intervenir dans un mécanisme de type quorum-sensing (QS) chez les bactéries à Gram positif. La première partie de ma thèse a consisté à confirmer cette hypothèse sur le locus shp/rgg1358 de S. thermophilus LMD-9, espèce contenant le plus grand nombre de systèmes SHP/Rgg dans son génome. Pour ceci, les étapes impliquées dans un mécanisme de QS ont été étudiées : la sécrétion, la maturation et la détection à une concentration seuil de la phéromone, sa réimportation à l'intérieur de la cellule, son interaction avec un régulateur transcriptionnel et enfin l'interaction de la protéine régulatrice à l'ADN. Par l'utilisation d'approches génétiques et biochimiques, nous avons démontré l'existence d'un nouveau mécanisme de QS impliquant pour la première fois un régulateur transcriptionnel Rgg et une phéromone SHP, importée à l'intérieur de la cellule par le transporteur d'oligopeptides AmiCDEF. Le rôle de la protéase membranaire, Eep, a également été démontré dans la maturation de la phéromone, dont la forme mature a été déterminée par spectrométrie de masse et validée in vivo. Dans un second temps, nous avons exploré la fonctionnalité de ce nouveau mécanisme sur d'autres loci shp/rgg, dans le but d étudier l'existence d éventuels phénomènes de cross-talk entre les bactéries. L'étude de nouveaux loci, en système hétérologue chez S. thermophilus LMD-9, a permis d'étendre la fonctionnalité du mécanisme à deux systèmes SHP/Rgg de streptocoques pathogènes, à savoir S. agalactiae et S. mutans. En parallèle à ce travail de caractérisation, l'identification des régulons des systèmes SHP/Rgg a été entreprise. La construction d'un arbre phylogénétique des protéines Rgg-like a permis d'identifier 68 systèmes SHP/Rgg, que nous avons classés en trois groupes. L'analyse des régions promotrices des gènes shp a conduit à l'identification d'un site putatif de liaison des protéines Rgg à l'ADN spécifiques de chaque groupe SHP/Rgg. Une approche in silico a ensuite été menée afin de rechercher, dans les génomes séquencés de streptocoques, les gènes cibles putatifs. Alors que des cibles proximales ont été détectées pour les groupes II et III, des cibles distales ont été identifiées dans les groupes I et II. Actuellement, la validation de certaines cibles est en cours au laboratoire. A l'avenir, ce travail pourrait permettre le développement de petits peptides permettant d'optimiser l'utilisation de S. thermophilus en industries laitières et de réduire la virulence des streptocoques pathogènes.The discovery of a genetic context encoding a small hydrophobic peptide (SHP) and a transcriptional regulator belonging to the Rgg family (in nearly all streptococcal genomes) , following by the study of one of this loci in S. thermophilus LMD-9, led to the hypothesis that the regulatory proteins Rgg in association with a putative pheromone SHP could define a novel quorum-sensing (QS) regulatory mechanism in Gram-positive bacteria. The first part of my PhD consisted to validate this hypothesis. For this purpose, we analyzed the SHP/Rgg system in all the steps that are commonly involved in QS mechanisms: (i) secretion of the putative pheromone, (ii) maturation of the pheromone, (iii) capture of the pheromone from the external environment at a threshold concentration, (iv) importation of the pheromone inside the cell and (v) interaction of the transcriptional regulator to the promoter regions of targeted genes. Experimentally, we focused on the so-called shp/rgg1358 locus of S. thermophilus LMD-9, which is the streptococcal species containing the largest number of shp/rgg pairs in its genome. By using genetic and biochemistry approaches, we uncovered a new QS mechanism that involves the pheromone SHP, the oligopeptide transporter AmiCDEF for the uptake of the pheromone and the transcriptional regulator Rgg for the control of target gene expression. Furthermore, we showed that the membrane protease Eep participates in the production of the mature pheromone, which has been identified by mass spectrometry. Once characterized, the second part of my PhD was to explore the functionality of this new QS system in other streptococcal strain or species, in order to determine if cross-reactivity phenomenon between streptococci can occur. By using heterologous expression in S. thermophilus LMD-9, we extended the functionality of the SHP/Rgg system to two pathogenic streptococcal species, i.e. S. agalactiae and S. mutans. The last part of my PhD consisted in identifying the regulon of all SHP/Rgg systems. Following the construction of a phylogenetic tree of the Rgg-like proteins in low GC Gram-positive bacteria, we identified 68 SHP/Rgg systems that we classified in three groups. Analyzing the promoter regions of all shp genes led to the identification of a putative Rgg DNA binding site specific to each SHP/Rgg group. An in silico approach was used to scan all sequenced streptococcal genomes for the three identified patterns. Whereas proximal target genes were detected for groups II and III, distal target genes were found in groups I and II. In addition, we uncovered that putative Rgg DNA binding sites can be localized in coding or non-coding region. Currently, validations are in progress. To sum-up, my PhD studies provided evidences that the Rgg proteins in association with small peptide pheromones define a new QS mechanism that seems to regulate the expression of distal and proximal genes in a species-dependent manner. Important insights should be obtained concerning a putative crosstalk among streptococci that involves the SHP/Rgg QS system. My studies may constitute a basis for the development of small peptides to optimize the use of S. thermophilus in dairy factories and reduce the virulence of pathogenic streptococci.PARIS-AgroParisTech Centre Paris (751052302) / SudocSudocFranceF

    Rgg-associated SHP signaling peptides mediate cross-talk in Streptococci.

    Get PDF
    We described a quorum-sensing mechanism in the streptococci genus involving a short hydrophobic peptide (SHP), which acts as a pheromone, and a transcriptional regulator belonging to the Rgg family. The shp/rgg genes, found in nearly all streptococcal genomes and in several copies in some, have been classified into three groups. We used a genetic approach to evaluate the functionality of the SHP/Rgg quorum-sensing mechanism, encoded by three selected shp/rgg loci, in pathogenic and non-pathogenic streptococci. We characterized the mature form of each SHP pheromone by mass-spectrometry. We produced synthetic peptides corresponding to these mature forms, and used them to study functional complementation and cross-talk between these different SHP/Rgg systems. We demonstrate that a SHP pheromone of one system can influence the activity of a different system. Interestingly, this does not seem to be dependent on the SHP/Rgg group and cross-talk between pathogenic and non-pathogenic streptococci is observed

    RovS and its associated signaling peptide form a cell-to-cell communication system required for streptococcus agalactiae pathogenesis

    No full text
    Bacteria can communicate with each other to coordinate their biological functions at the population level. In a previous study, we described a cell-to-cell communication system in streptococci that involves a transcriptional regulator belonging to the Rgg family and short hydrophobic peptides (SHPs) that act as signaling molecules. Streptococcus agalactiae, an opportunistic pathogenic bacterium responsible for fatal infections in neonates and immunocompromised adults, has one copy of the shp/rgg locus. The SHP-associated Rgg is called RovS in S. agalactiae. In this study, we found that the SHP/RovS cell-to-cell communication system is active in the strain NEM316 of S. agalactiae, and we identified different partners that are involved in this system, such as the Eep peptidase, the PptAB, and the OppA1-F oligopeptide transporters. We also identified a new target gene controlled by this system and reexamined the regulation of a previously proposed target gene, fbsA, in the context of the SHP-associated RovS system. Furthermore, our results are the first to indicate the SHP/RovS system specificity to host liver and spleen using a murine model, which demonstrates its implication in streptococci virulence. Finally, we observed that SHP/RovS regulation influences S. agalactiae's ability to adhere to and invade HepG2 hepatic cells. Hence, the SHP/RovS cell-to-cell communication system appears to be an essential mechanism that regulates pathogenicity in S. agalactiae and represents an attractive target for the development of new therapeutic strategies. IMPORTANCE Rgg regulators and their cognate pheromones, called small hydrophobic peptides (SHPs), are present in nearly all streptococcal species. The general pathways of the cell-to-cell communication system in which Rgg and SHP take part are well understood. However, many other players remain unidentified, and the direct targets of the system, as well as its link to virulence, remain unclear. Here, we identified the different players involved in the SHP/Rgg system in S. agalactiae, which is the leading agent of severe infections in human newborns. We have identified a direct target of the Rgg regulator in S. agalactiae (called RovS) and examined a previously proposed target, all in the context of associated SHP. For the first time, we have also demonstrated the implication of the SHP/RovS mechanism in virulence, as well as its host organ specificity. Thus, this cell-to-cell communication system may represent a future target for S. agalactiae disease treatment

    Plasmids used in this study.

    No full text
    a<p>Ts indicates that the plasmid encodes a thermosensitive RepA protein.</p>b<p>Km and Erm indicate resistance to kanamycin and erythromycin, respectively.</p
    corecore