24 research outputs found

    IL-10 producing regulatory and helper T-cells in systemic lupus erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a highly heterogeneous autoimmune disease characterised by the production of pathogenic autoantibodies against nuclear self-antigens. The anti-inflammatory and tolerogenic cytokine Interleukin-10 appears to play a paradoxical pathogenic role in SLE and is therefore currently therapeutically targeted in clinical trials. It is generally assumed that the pathogenic effect of IL-10 in SLE is due to its growth and differentiation factor activity on autoreactive B-cells, but effects on other cells might also play a role. To date, a unique cellular source of pathogenic IL-10 in SLE has not been identified. In this review, we focus on the contribution of different CD4+T-cell subsets to IL-10 and autoantibody production in SLE. In particular, we discuss that IL-10 produced by different subsets of adaptive regulatory T-cells, follicular helper T-cells and extra-follicular B-helper T-cells is likely to have different effects on autoreactive B-cell responses. A better understanding of the role of IL-10 in B-cell responses and lupus would allow to identify the most promising therapies for individual SLE patients in the future

    Brain-wide representations of behavior spanning multiple timescales and states in C. elegans.

    Get PDF
    Changes in an animal's behavior and internal state are accompanied by widespread changes in activity across its brain. However, how neurons across the brain encode behavior and how this is impacted by state is poorly understood. We recorded brain-wide activity and the diverse motor programs of freely moving C. elegans and built probabilistic models that explain how each neuron encodes quantitative behavioral features. By determining the identities of the recorded neurons, we created an atlas of how the defined neuron classes in the C. elegans connectome encode behavior. Many neuron classes have conjunctive representations of multiple behaviors. Moreover, although many neurons encode current motor actions, others integrate recent actions. Changes in behavioral state are accompanied by widespread changes in how neurons encode behavior, and we identify these flexible nodes in the connectome. Our results provide a global map of how the cell types across an animal's brain encode its behavior

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Evidence for a pathogenic role of extrafollicular, IL-10–producing CCR6+B helper T cells in systemic lupus erythematosus

    No full text
    Interleukin 10 (IL-10) is an antiinflammatory cytokine, but also promotes B cell responses and plays a pathogenic role in systemic lupus erythematosus (SLE). CD4+CCR6+IL-7R+T cells from human tonsils produced IL-10 following stimulation by na\uefve B cells, which promoted B cell immunoglobulin G (IgG) production. These tonsillar CCR6+B helper T cells were phenotypically distinct from follicular helper T (TFH) cells and lacked BCL6 expression. In peripheral blood, a CCR6javax.xml.bind.JAXBElement@746419feT cell population with similar characteristics was identified, which lacked Th17- and TFH-associated gene signatures and differentiation-associated surface markers. CD4+CCR6+T cells expressing IL-10, but not IL-17, were also detectable in the spleens of cytokine reporter mice. They provided help for IgG production in vivo, and expanded systemically in pristane-induced lupus-like disease. In SLE patients, CD4+CCR6+IL-7R+T cells were associated with the presence of pathogenic anti-dsDNA (doublestranded DNA) antibodies, and provided spontaneous help for autoantibody production ex vivo. Strikingly, IL-10-producing CCR6+T cells were highly abundant in lymph nodes of SLE patients, and colocalized with B cells at the margins of follicles. In conclusion, we identified a previously uncharacterized population of extrafollicular B helper T cells, which produced IL-10 and could play a prominent pathogenic role in SLE
    corecore