2,043 research outputs found

    Growing degree-day measurement of cyst germination rates in the toxic dinoflagellate Alexandrium catenella

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fischer, A., & Brosnahan, M. Growing degree-day measurement of cyst germination rates in the toxic dinoflagellate Alexandrium catenella. Applied and Environmental Microbiology, 88(12), (2022): e02518-21, https://doi.org/10.1128/aem.02518-21.Blooms of many dinoflagellates, including several harmful algal bloom (HAB) species, are seeded and revived through the germination of benthic resting cysts. Temperature is a key determinant of cysts’ germination rate, and temperature–germination rate relationships are therefore fundamental to understanding species’ germling cell production, cyst bed persistence, and resilience to climate warming. This study measured germination by cysts of the HAB dinoflagellate Alexandrium catenella using a growing degree-day (DD) approach that accounts for the time and intensity of warming above a critical temperature. Time courses of germination at different temperatures were fit to lognormal cumulative distribution functions for the estimation of the median days to germination. As temperature increased, germination times decreased hyperbolically. DD scaling collapsed variability in germination times between temperatures after cysts were oxygenated. A parallel experiment demonstrated stable temperature–rate relationships in cysts collected during different phases of seasonal temperature cycles in situ over three years. DD scaling of the results from prior A. catenella germination studies showed consistent differences between populations across a wide range of temperatures and suggests selective pressure for different germination rates. The DD model provides an elegant approach to quantify and compare the temperature dependency of germination among populations, between species, and in response to changing environmental conditions.We gratefully acknowledge support to A.D.F. and M.L.B. through the Woods Hole Center for Oceans and Human Health (National Science Foundation grants OCE‐0430724, OCE‐0911031, OCE‐1314642, and OCE-1840381 and National Institutes of Health grants NIEHS‐1P50‐ES02192301 and P01ES028938)

    Quantitative response of Alexandrium catenella cyst dormancy to cold exposure

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Protist 169 (2018): 645-661, doi:10.1016/j.protis.2018.06.001.Many dinoflagellate cysts experience dormancy, a reversible state that prevents germination during unfavorable periods. Several of these species also cause harmful algal blooms (HABs), so a quantitative understanding of dormancy cycling is desired for better prediction and mitigation of bloom impacts. This study examines the effect of cold exposure on the duration of dormancy in Alexandrium catenella, a HAB dinoflagellate that causes paralytic shellfish poisoning (PSP). Mature, dormant cysts from Nauset Marsh (Cape Cod, MA USA) were stored at low but above freezing temperatures for up to six months. Dormancy status was then determined at regular intervals using a germination assay. Dormancy timing was variable among temperatures and was shorter in colder treatments, but the differences collapse when temperature and duration of storage are scaled by chilling-units (CU), a common horticultural predictor of plant and insect development in response to weather. Cysts within Nauset meet a well-defined chilling requirement by late January, after which they are poised to germinate with the onset of favorable conditions in spring. Cysts thus modulate their dormancy cycles in response to their temperature history, enhancing the potential for new blooms and improving this species’ adaptability to both unseasonable weather and new habitats/climate regimes.This work was supported by the National Science Foundation [OCE-0430724, OCE-0911031]; the National Institute of Environmental Health Sciences [1P50-ES01274201, 1P01ES021923]; the National Park Service Cooperative Agreement [H238015504]; and the Friends of Cape Cod National Seashore

    Sixty years of Sverdrup : a retrospective of progress in the study of phytoplankton blooms

    Get PDF
    Author Posting. © The Oceanography Society, 2014. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 27, no. 1 (2014): 222–235, doi:10.5670/oceanog.2014.26.One of the most dramatic large-scale features in the ocean is the seasonal greening of the North Atlantic in spring and summer due to the accumulation of phytoplankton biomass in the surface layer. In 1953, Harald Ulrik Sverdrup hypothesized a now canonical mechanism for the development and timing of phytoplankton blooms in the North Atlantic. Over the next 60 years, Sverdrup's Critical Depth Hypothesis spurred progress in understanding of bloom dynamics and offered a valuable theoretical framework on which to build. In reviewing 60 years of literature, the authors trace the development of modern bloom initiation hypotheses, highlighting three case studies that illuminate the complexity, including both catalysts and impediments, of scientific progress in the wake of Sverdrup's hypothesis. Most notably, these cases demonstrate that the evolution of our understanding of phytoplankton blooms was paced by access not only to technology but also to concurrent insights from several disciplines. This exploration of the trajectories and successes in bloom studies highlights the need for expanding interdisciplinary collaborations to address the complexity of phytoplankton bloom dynamics

    Nanotoxicology: characterizing the scientific literature, 2000–2007

    Get PDF
    Understanding the toxicity of nanomaterials and nano-enabled products is important for human and environmental health and safety as well as public acceptance. Assessing the state of knowledge about nanotoxicology is an important step in promoting comprehensive understanding of the health and environmental implications of these new materials. To this end, we employed bibliometric techniques to characterize the prevalence and distribution of the current scientific literature. We found that the nano-toxicological literature is dispersed across a range of disciplines and sub-fields; focused on in vitro testing; often does not specify an exposure pathway; and tends to emphasize acute toxicity and mortality rather than chronic exposure and morbidity. Finally, there is very little research on consumer products, particularly on their environmental fate, and most research is on the toxicity of basic nanomaterials. The implications for toxicologists, regulators and social scientists studying nanotechnology and society are discussed

    Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Anderson, D. M., Fachon, E., Pickart, R. S., Lin, P., Fischer, A. D., Richlen, M. L., Uva, V., Brosnahan, M. L., McRaven, L., Bahr, F., Lefebvre, K., Grebmeier, J. M., Danielson, S. L., Lyu, Y., & Fukai, Y. Evidence for massive and recurrent toxic blooms of Alexandrium catenella in the Alaskan Arctic. Proceedings of the National Academy of Sciences of the United States of America, 118(41) (2021): e2107387118, https://doi.org/10.1073/pnas.2107387118.Among the organisms that spread into and flourish in Arctic waters with rising temperatures and sea ice loss are toxic algae, a group of harmful algal bloom species that produce potent biotoxins. Alexandrium catenella, a cyst-forming dinoflagellate that causes paralytic shellfish poisoning worldwide, has been a significant threat to human health in southeastern Alaska for centuries. It is known to be transported into Arctic regions in waters transiting northward through the Bering Strait, yet there is little recognition of this organism as a human health concern north of the Strait. Here, we describe an exceptionally large A. catenella benthic cyst bed and hydrographic conditions across the Chukchi Sea that support germination and development of recurrent, locally originating and self-seeding blooms. Two prominent cyst accumulation zones result from deposition promoted by weak circulation. Cyst concentrations are among the highest reported globally for this species, and the cyst bed is at least 6× larger in area than any other. These extraordinary accumulations are attributed to repeated inputs from advected southern blooms and to localized cyst formation and deposition. Over the past two decades, warming has likely increased the magnitude of the germination flux twofold and advanced the timing of cell inoculation into the euphotic zone by 20 d. Conditions are also now favorable for bloom development in surface waters. The region is poised to support annually recurrent A. catenella blooms that are massive in scale, posing a significant and worrisome threat to public and ecosystem health in Alaskan Arctic communities where economies are subsistence based.Funding for D.M.A., R.S.P., E.F., P.L., A.D.F., V.U., M.L.B., L.M., F.B., and M.L.R. was provided by grants from the NSF Office of Polar Programs (Grants OPP-1823002 and OPP-1733564) and the National Ocanic and Atmospheric Administration (NOAA) Arctic Research program (through the Cooperative Institute for the North Atlantic Region [CINAR; Grants NA14OAR4320158 and NA19OAR4320074]), for J.M.G. through CINAR 22309.07 UMCES (University of Maryland Center for Environmental Science), and for D.M.A. and K.L. through NOAA’s Center for Coastal and Ocean Studies Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Program (NA20NOS4780195). Funding for D.M.A., M.L.R., M.L.B., E.F., V.U., and A.D.F. was also provided by NSF (Grant OCE-1840381) and NIH (Grant 1P01-ES028938-01) through the Woods Hole Center for Oceans and Human Health. S.L.D. was supported by North Pacific Research Board IERP Grants A91-99a and A91-00a. This is IERP publication ArcticIERP-41 and ECOHAB Contribution No. ECO983

    Long-standing nonkin relationships of older adults in the Netherlands and the United States

    Get PDF
    The main research questions of this study were (1) How long have adults in the Netherlands and the United States known members of their nonkin networks? (2) What are the predictors of long-standing nonkin relationships? and (3) Which predictors are recognizable in both societies? The data came from the NESTOR-LSN survey (3,229 adults aged 55 to 89 years in the Netherlands) and from the Northern California Community Study (n = 1,050, with 225 respondents aged 55 to 91 years in the United States). In both countries, the duration of nonkin relationships was related to the absence of network-disturbing variables (e.g., the number of years since the last move), network-sustaining variables (e.g., distance to nonkin), and other network properties (e.g., homogeneity). Nationally based differences were also observed (e.g., having a car was related to stable relationships only in the United States, and the special integrative functions of exclusive friendships were elicited only in Europe)

    Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at √s=8 TeV

    Get PDF
    Results are reported of a general search for pair production of heavy resonances decaying to pairs of hadronic jets in events with at least four jets. The study is based on up to 19.4 fb(-1) of integrated luminosity from proton-proton collisions at a center-of-mass energy of 8 TeV, recorded with the CMS detector at the LHC. Limits are determined on the production of scalar top quarks (top squarks) in the framework of R-parity violating supersymmetry and on the production of color-octet vector bosons (colorons). First limits at the LHC are placed on top squark production for two scenarios. The first assumes decay to a bottom quark and a light-flavor quark and is excluded for masses between 200 and 385 GeV, and the second assumes decay to a pair of light-flavor quarks and is excluded for masses between 200 and 350 GeV at 95% confidence level. Previous limits on colorons decaying to light-flavor quarks are extended to exclude masses from 200 to 835 GeV

    Study of Z boson production in pPb collisions at √sNN=5.02 TeV

    Get PDF
    The production of Z bosons in pPb collisions at root S-NN = 5.02 TeV is studied by the CMS experiment via the electron and muon decay channels. The inclusive cross section is compared to pp collision predictions, and found to scale with the number of elementary nucleon-nucleon collisions. The differential cross sections as a function of the Z boson rapidity and transverse momentum are measured. Though they are found to be consistent within uncertainty with theoretical predictions both with and without nuclear effects, the forward-backward asymmetry suggests the presence of nuclear effects at large rapidities. These results provide new data for constraining nuclear parton distribution functions

    Measurement of quark- and gluon-like jet fractions using jet charge in PbPb and pp collisions at 5.02 TeV

    Get PDF
    The momentum-weighted sum of the electric charges of particles inside a jet, known as jet charge, is sensitive to the electric charge of the particle initiating the parton shower. This paper presents jet charge distributions in root sNN = 5.02 TeV lead-lead (PbPb) and proton-proton (pp) collisions recorded with the CMS detector at the LHC. These data correspond to integrated luminosities of 404 mu b(-1)and 27.4 pb(-1)for PbPb and pp collisions, respectively. Leveraging the sensitivity of the jet charge to fundamental differences in the electric charges of quarks and gluons, the jet charge distributions from simulated events are used as templates to extract the quark- and gluon-like jet fractions from data. The modification of these jet fractions is examined by comparing pp and PbPb data as a function of the overlap of the colliding Pb nuclei (centrality). This measurement tests the color charge dependence of jet energy loss due to interactions with the quark-gluon plasma. No significant modification between different centrality classes and with respect to pp results is observed in the extracted quark- and gluon-like jet fractions.Peer reviewe
    • 

    corecore