230 research outputs found

    Genomic adaptations to aquatic and aerial life in mayflies and the origin of insect wings

    Get PDF
    The evolution of winged insects revolutionized terrestrial ecosystems and led to the largest animal radiation on Earth. However, we still have an incomplete picture of the genomic changes that underlay this diversification. Mayflies, as one of the sister groups of all other winged insects, are key to understanding this radiation. Here, we describe the genome of the mayfly Cloeon dipterum and its gene expression throughout its aquatic and aerial life cycle and specific organs. We discover an expansion of odorant-binding-protein genes, some expressed specifically in breathing gills of aquatic nymphs, suggesting a novel sensory role for this organ. In contrast, flying adults use an enlarged opsin set in a sexually dimorphic manner, with some expressed only in males. Finally, we identify a set of wing-associated genes deeply conserved in the pterygote insects and find transcriptomic similarities between gills and wings, suggesting a common genetic program. Globally, this comprehensive genomic and transcriptomic study uncovers the genetic basis of key evolutionary adaptations in mayflies and winged insects

    A high-quality annually laminated sequence from Lake Belau, Northern Germany: Revised chronology and its implications for palynological and tephrochronological studies

    Get PDF
    The annually laminated record of Lake Belau offers an exceptional opportunity to investigate with high temporal resolution Holocene environmental change, aspects of climate history and human impact on the landscape. A new chronology based on varve counts, 14C-datings and heavy metal history has been established, covering the last 9400 years. Based on multiple varve counting on two core sequences, the easily countable laminated section spans about 7850 varve years (modelled age range c. 9430 to 1630 cal. BP). Not all of the record is of the same quality but approximately 69% of the varves sequence is classified to be of high quality and only c. 5% of low quality. The new chronology suggests dates generally c. 260 years older than previously assumed for the laminated section of the record. The implications for the vegetation and land-use history of the region as well as revised datings for pollen stratigraphical events are discussed. Tephra analysis allowed the identification of several cryptotephra layers. New dates for volcanic eruptions are presented for the Lairg B event (c. 6848 cal. BP, 2s range 6930–6713 cal. BP), the Hekla 4 event (c. 4396 cal. BP, 2s range 4417–4266 cal. BP), and Hekla 3 eruption (c. 3095 cal. BP, 2s range 3120–3068 cal. BP)

    Hip joint articular soft tissues of non-dinosaurian Dinosauromorpha and early Dinosauria: evolutionary and biomechanical implications for Saurischia

    Get PDF
    Dinosauromorphs evolved a wide diversity of hind limb skeletal morphologies, suggesting highly divergent articular soft tissue anatomies. However, poor preservation of articular soft tissues in fossils has hampered any follow-on functional inferences. We reconstruct the hip joint soft tissue anatomy of non-dinosaurian dinosauromorphs and early dinosaurs using osteological correlates derived from extant sauropsids and infer trends in character transitions along the theropod and sauropodomorph lineagues. Femora and pelves of 107 dinosauromorphs and outgroup taxa were digitized using 3D imaging techniques. Key transitions were estimated using maximum likelihood ancestral state reconstruction. The hips of dinosauromorphs possessed wide a disparity of soft tissue morphologies beyond the types and combinations exhibited by extant archosaurs. Early evolution of the dinosauriform hip joint was characterized by the retention of a prominent femoral hyaline cartilage cone in post-neonatal individuals, with the cartilage cone independently reduced within theropods and sauropodomorphs. The femur of Dinosauriformes possessed a fibrocartilage sleeve on the metaphysis, which surrounded a hyaline core. The acetabulum of Dinosauriformes possessed distinct labrum and antitrochanter structures. In sauropodomorphs, hip congruence was maintained by thick hyaline cartilage on the femoral head, whereas theropods relied on acetabular tissues such as ligaments and articular pads. In particular, the craniolaterally ossified hip capsule of non- Avetheropoda neotheropods permitted mostly parasagittal femoral movements. These data indicate that the dinosauromorph hip underwent mosaic evolution within the saurischian lineage and that sauropodomorphs and theropods underwent both convergence and divergence in articular soft tissues, correlated with transitions in body size, locomotor posture, and joint loading

    Über den heutigen Stand der Pollenuntersuchungen als Hilfsmittel der Quartärforschung

    No full text
    researc
    corecore