17 research outputs found

    ‘Priming’ exercise and O2 uptake kinetics during treadmill running

    Get PDF
    We tested the hypothesis that priming exercise would speed kinetics during treadmill running. Eight subjects completed a square-wave protocol, involving two bouts of treadmill running at 70% of the difference between the running speeds at lactate threshold (LT) and max, separated by 6-min of walking at 4 km h−1, on two occasions. Oxygen uptake was measured breath-by-breath and subsequently modelled using non-linear regression techniques. Heart rate and blood lactate concentration were significantly elevated prior to the second exercise bout compared to the first. However, kinetics was not significantly different between the first and second exercise bouts (mean ± S.D., phase II time constant, Bout 1: 16 ± 3 s vs. Bout 2: 16 ± 4 s; slow component amplitude, Bout 1: 0.24 ± 0.10 L min−1vs. Bout 2: 0.20 ± 0.12 L min−1; mean response time, Bout 1: 34 ± 4 s vs. Bout 2: 34 ± 6 s; P > 0.05 for all comparisons). These results indicate that, contrary to previous findings with other exercise modalities, priming exercise does not alter kinetics during high-intensity treadmill running, at least in physically active young subjects. We speculate that the relatively fast kinetics and the relatively small slow component in the control (‘un-primed’) condition negated any enhancement of kinetics by priming exercise in this exercise modality

    Saving the world’s terrestrial megafauna

    Get PDF
    From the late Pleistocene to the Holocene, and now the so called Anthropocene, humans have been driving an ongoing series of species declines and extinctions (Dirzo et al. 2014). Large-bodied mammals are typically at a higher risk of extinction than smaller ones (Cardillo et al. 2005). However, in some circumstances terrestrial megafauna populations have been able to recover some of their lost numbers due to strong conservation and political commitment, and human cultural changes (Chapron et al. 2014). Indeed many would be in considerably worse predicaments in the absence of conservation action (Hoffmann et al. 2015). Nevertheless, most mammalian megafauna face dramatic range contractions and population declines. In fact, 59% of the world’s largest carnivores (≥ 15 kg, n = 27) and 60% of the world’s largest herbivores (≥ 100 kg, n = 74) are classified as threatened with extinction on the International Union for the Conservation of Nature (IUCN) Red List (supplemental table S1 and S2). This situation is particularly dire in sub-Saharan Africa and Southeast Asia, home to the greatest diversity of extant megafauna (figure 1). Species at risk of extinction include some of the world’s most iconic animals—such as gorillas, rhinos, and big cats (figure 2 top row)—and, unfortunately, they are vanishing just as science is discovering their essential ecological roles (Estes et al. 2011). Here, our objectives are to raise awareness of how these megafauna are imperiled (species in supplemental table S1 and S2) and to stimulate broad interest in developing specific recommendations and concerted action to conserve them

    Midwifery-led antenatal care models: mapping a systematic review to an evidence-based quality framework to identify key components and characteristics of care.

    Get PDF
    BACKGROUND: Implementing effective antenatal care models is a key global policy goal. However, the mechanisms of action of these multi-faceted models that would allow widespread implementation are seldom examined and poorly understood. In existing care model analyses there is little distinction between what is done, how it is done, and who does it. A new evidence-informed quality maternal and newborn care (QMNC) framework identifies key characteristics of quality care. This offers the opportunity to identify systematically the characteristics of care delivery that may be generalizable across contexts, thereby enhancing implementation. Our objective was to map the characteristics of antenatal care models tested in Randomised Controlled Trials (RCTs) to a new evidence-based framework for quality maternal and newborn care; thus facilitating the identification of characteristics of effective care. METHODS: A systematic review of RCTs of midwifery-led antenatal care models. Mapping and evaluation of these models' characteristics to the QMNC framework using data extraction and scoring forms derived from the five framework components. Paired team members independently extracted data and conducted quality assessment using the QMNC framework and standard RCT criteria. RESULTS: From 13,050 citations initially retrieved we identified 17 RCTs of midwifery-led antenatal care models from Australia (7), the UK (4), China (2), and Sweden, Ireland, Mexico and Canada (1 each). QMNC framework scores ranged from 9 to 25 (possible range 0-32), with most models reporting fewer than half the characteristics associated with quality maternity care. Description of care model characteristics was lacking in many studies, but was better reported for the intervention arms. Organisation of care was the best-described component. Underlying values and philosophy of care were poorly reported. CONCLUSIONS: The QMNC framework facilitates assessment of the characteristics of antenatal care models. It is vital to understand all the characteristics of multi-faceted interventions such as care models; not only what is done but why it is done, by whom, and how this differed from the standard care package. By applying the QMNC framework we have established a foundation for future reports of intervention studies so that the characteristics of individual models can be evaluated, and the impact of any differences appraised

    Effect of different rugby league warm ups on performance and perceptions of readiness to perform

    No full text
    The objective of this study was to determine whether a dynamic-based warm up of shorter duration and higher intensity (DSH) was more effective at preparing elite rugby league players for performance, than a warm up that included combined static and dynamic activities of longer duration and lower intensity (CLL). Elite rugby league players (n=28) completed the warm up routines in random order, separated by 7 days. Following each warm up, players completed vertical jump and 40 m sprint assessments. The DSH warm up was significantly shorter in duration (DSH: 16 ± 1 min vs CLL: 22 ± 1 min, p = 0.013) and higher in intensity (average heart rate: DSH: 122 ± 14 bpm vs CLL: 115 ± 11 bpm, p = 0.009) than the CLL warm up. The DSH warm up resulted in significantly faster 40 m sprint time (DSH: 5.26 ± 0.13 s vs CLL: 5.34 ± 0.22 s, p = 0.033) with no difference in vertical jump (DSH: 0.59 ± 0.05 m vs CLL: 0.6 ± 0.05 m), 10 m (DSH: 1.63 ± 0.05 s vs CLL: 1.67 ± 0.09s) and 20 m (DSH: 2.91 ± 0.06 vs CLL: 2.95 ± 0.12 s) sprint time. After using the DSH warm up in three pre-season trial games, players and coaches rated the DSH warm up significantly better at preparing players for performance (DSH: 7.6 ± 1.3 vs CLL: 6.0 ± 1.1, p = 0.019). In conclusion this study unveiled contrasting evidence for the use of a DSH warm up and requires further investigation

    Providence virus: a new member of the Tetraviridae that infects cultured insect cells

    No full text
    We identified a new member of the Tetraviridae, Providence virus (PrV), persistently infecting a midgut cell line derived from the corn earworm (Helicoverpa zea). Virus purified from these cells also productively infected a H. zea fat body cell line, and a cell line from whole embryos of the beet armyworm, Spodoptera exigua. PrV is thus the first tetravirus shown to replicate in cell culture. PrV virions are isometric particles composed of two structural proteins (60 and 7.4 kDa) that encapsidate both the genomic (6.4 kb) and the subgenomic (2.5 kb) RNAs. The monopartite organization of the PrV genome resembles that of Nudaurelia beta virus and Thosea asigna virus, members of the genus Betatetravirus. The predicted sequence of the PrV structural proteins demonstrates homology to tetraviruses in both genera. The infectivity of PrV for cultured cells uniquely permitted examination of tetravirus RNA and protein synthesis during synchronous infection. The discovery of PrV greatly facilitates studies of tetravirus molecular biology. (C) 2003 Elsevier Science (USA). All rights reserved
    corecore