80 research outputs found

    Case report: Recurrence of inflammatory cardiomyopathy detected by magnetocardiography

    Get PDF
    BackgroundThe diagnosis of inflammatory cardiomyopathies remains challenging. Life-threatening conditions such as acute coronary syndrome (ACS) always have to be considered as differential diagnoses due to similarities in presentation. Diagnostic methods for inflammatory cardiomyopathy include endomyocardial biopsy (EMB), cardiac magnetic resonance imaging (CMR), and positron emission tomography-computed tomography (PET-CT). We report a case in whom magnetocardiography (MCG) led to an initial diagnosis of inflammatory cardiomyopathy and in whom MCG was used for subsequent monitoring of treatment response under immunosuppression.Case presentationA 53-year-old man presented with two recurrent episodes of inflammatory cardiomyopathy within a 2-year period. The patient initially presented with reduced exercise capacity. Echocardiography revealed a moderately reduced left ventricular ejection fraction (LVEF 40%). Coronary angiography ruled out obstructive coronary artery disease (CAD) and an EMB was performed. The EMB revealed inflammatory cardiomyopathy without viral pathogens or replication. Moreover, we performed MCG, which confirmed a pathological Tbeg-Tmax vector of 0.108. We recently established a cutoff value of Tbeg-Tmax of 0.051 or greater for the diagnosis of inflammatory cardiomyopathy. Immunosuppressive therapy with prednisolone was initiated, resulting in clinical improvement and an LVEF increase from 40% to 45% within 1 month. Furthermore, the MCG vector improved to 0.036, which is considered normal based on our previous findings. The patient remained clinically stable for 23 months. During a routine follow-up, MCG revealed an abnormal Tbeg-Tmax vector of 0.069. The patient underwent additional testing including routine laboratory values, echocardiography (LVEF 35%), and PET-CT. PET-CT revealed increased metabolism in the myocardium—primarily in the lateral wall. Therapy with prednisolone and azathioprine was initiated and MCG was used to monitor the effect of immunosuppressive therapy.ConclusionIn addition to diagnostic screening, MCG has the potential to become a valuable method for surveillance monitoring of patients who have completed treatment for inflammatory cardiomyopathy. Furthermore, it could be used for treatment monitoring. While changes in the magnetic vector of the heart are not specific to inflammatory cardiomyopathy, as they may also occur in other types of cardiomyopathies, MCG offers a tool of broad and efficient diagnostic screening for cardiac pathologies without side effects

    Comparative metagenomics reveals the distinctive adaptive features of the Spongia officinalis endosymbiotic consortium

    Get PDF
    Current knowledge of sponge microbiome functioning derives mostly from comparative analyses with bacterioplankton communities. We employed a metagenomics-centered approach to unveil the distinct features of the Spongia officinalis endosymbiotic consortium in the context of its two primary environmental vicinities. Microbial metagenomic DNA samples (n = 10) from sponges, seawater, and sediments were subjected to Hiseq Illumina sequencing (c. 15 million 100 bp reads per sample). Totals of 10,272 InterPro (IPR) predicted protein entries and 784 rRNA gene operational taxonomic units (OTUs, 97% cut-off) were uncovered from all metagenomes. Despite the large divergence in microbial community assembly between the surveyed biotopes, the S. officinalis symbiotic community shared slightly greater similarity (p < 0.05), in terms of both taxonomy and function, to sediment than to seawater communities. The vast majority of the dominant S. officinalis symbionts (i.e., OTUs), representing several, so-far uncultivable lineages in diverse bacterial phyla, displayed higher residual abundances in sediments than in seawater. CRISPR-Cas proteins and restriction endonucleases presented much higher frequencies (accompanied by lower viral abundances) in sponges than in the environment. However, several genomic features sharply enriched in the sponge specimens, including eukaryotic-like repeat motifs (ankyrins, tetratricopeptides, WD-40, and leucine-rich repeats), and genes encoding for plasmids, sulfatases, polyketide synthases, type IV secretion proteins, and terpene/terpenoid synthases presented, to varying degrees, higher frequencies in sediments than in seawater. In contrast, much higher abundances of motility and chemotaxis genes were found in sediments and seawater than in sponges. Higher cell and surface densities, sponge cell shedding and particle uptake, and putative chemical signaling processes favoring symbiont persistence in particulate matrices all may act as mechanisms underlying the observed degrees of taxonomic connectivity and functional convergence between sponges and sediments. The reduced frequency of motility and chemotaxis genes in the sponge microbiome reinforces the notion of a prevalent mutualistic mode of living inside the host. This study highlights the S. officinalis "endosymbiome" as a distinct consortium of uncultured prokaryotes displaying a likely "sit-and-wait" strategy to nutrient foraging coupled to sophisticated anti-viral defenses, unique natural product biosynthesis, nutrient utilization and detoxification capacities, and both microbe-microbe and host-microbe gene transfer amenability.Portuguese Foundation for Science and Technology (FCT) [PTDC/BIA-MIC/3865/2012, PTDC/MAR-BIO/1547/2014]; Education, Audiovisual and Culture Executive Agency (European Commission, Erasmus Mundus Programme) [EMA2 lot7/SALA1206422]info:eu-repo/semantics/publishedVersio

    A common root for coevolution and substitution rate variability in protein sequence evolution

    Get PDF
    We introduce a simple model that describes the average occurrence of point variations in a generic protein sequence. This model is based on the idea that mutations are more likely to be fixed at sites in contact with others that have mutated in the recent past. Therefore, we extend the usual assumptions made in protein coevolution by introducing a time dumping on the effect of a substitution on its surrounding and makes correlated substitutions happen in avalanches localized in space and time. The model correctly predicts the average correlation of substitutions as a function of their distance along the sequence. At the same time, it predicts an among-site distribution of the number of substitutions per site highly compatible with a negative binomial, consistently with experimental data. The promising outcomes achieved with this model encourage the application of the same ideas in the field of pairwise and multiple sequence alignment

    Knowledge-Driven Multi-Locus Analysis Reveals Gene-Gene Interactions Influencing HDL Cholesterol Level in Two Independent EMR-Linked Biobanks

    Get PDF
    Genome-wide association studies (GWAS) are routinely being used to examine the genetic contribution to complex human traits, such as high-density lipoprotein cholesterol (HDL-C). Although HDL-C levels are highly heritable (h2∼0.7), the genetic determinants identified through GWAS contribute to a small fraction of the variance in this trait. Reasons for this discrepancy may include rare variants, structural variants, gene-environment (GxE) interactions, and gene-gene (GxG) interactions. Clinical practice-based biobanks now allow investigators to address these challenges by conducting GWAS in the context of comprehensive electronic medical records (EMRs). Here we apply an EMR-based phenotyping approach, within the context of routine care, to replicate several known associations between HDL-C and previously characterized genetic variants: CETP (rs3764261, p = 1.22e-25), LIPC (rs11855284, p = 3.92e-14), LPL (rs12678919, p = 1.99e-7), and the APOA1/C3/A4/A5 locus (rs964184, p = 1.06e-5), all adjusted for age, gender, body mass index (BMI), and smoking status. By using a novel approach which censors data based on relevant co-morbidities and lipid modifying medications to construct a more rigorous HDL-C phenotype, we identified an association between HDL-C and TRIB1, a gene which previously resisted identification in studies with larger sample sizes. Through the application of additional analytical strategies incorporating biological knowledge, we further identified 11 significant GxG interaction models in our discovery cohort, 8 of which show evidence of replication in a second biobank cohort. The strongest predictive model included a pairwise interaction between LPL (which modulates the incorporation of triglyceride into HDL) and ABCA1 (which modulates the incorporation of free cholesterol into HDL). These results demonstrate that gene-gene interactions modulate complex human traits, including HDL cholesterol

    Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice

    Get PDF
    BACKGROUND: Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+) T cell responses to a malaria antigen induced by a live vaccine. METHODOLOGY AND FINDINGS: Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+) T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids the development of solutions to current obstacles of immunization programmes

    Multiple Data Analyses and Statistical Approaches for Analyzing Data from Metagenomic Studies and Clinical Trials

    Get PDF
    Metagenomics, also known as environmental genomics, is the study of the genomic content of a sample of organisms (microbes) obtained from a common habitat. Metagenomics and other “omics” disciplines have captured the attention of researchers for several decades. The effect of microbes in our body is a relevant concern for health studies. There are plenty of studies using metagenomics which examine microorganisms that inhabit niches in the human body, sometimes causing disease, and are often correlated with multiple treatment conditions. No matter from which environment it comes, the analyses are often aimed at determining either the presence or absence of specific species of interest in a given metagenome or comparing the biological diversity and the functional activity of a wider range of microorganisms within their communities. The importance increases for comparison within different environments such as multiple patients with different conditions, multiple drugs, and multiple time points of same treatment or same patient. Thus, no matter how many hypotheses we have, we need a good understanding of genomics, bioinformatics, and statistics to work together to analyze and interpret these datasets in a meaningful way. This chapter provides an overview of different data analyses and statistical approaches (with example scenarios) to analyze metagenomics samples from different medical projects or clinical trials

    Adolescent Brain Development and the Risk for Alcohol and Other Drug Problems

    Get PDF
    Dynamic changes in neurochemistry, fiber architecture, and tissue composition occur in the adolescent brain. The course of these maturational processes is being charted with greater specificity, owing to advances in neuroimaging and indicate grey matter volume reductions and protracted development of white matter in regions known to support complex cognition and behavior. Though fronto-subcortical circuitry development is notable during adolescence, asynchronous maturation of prefrontal and limbic systems may render youth more vulnerable to risky behaviors such as substance use. Indeed, binge-pattern alcohol consumption and comorbid marijuana use are common among adolescents, and are associated with neural consequences. This review summarizes the unique characteristics of adolescent brain development, particularly aspects that predispose individuals to reward seeking and risky choices during this phase of life, and discusses the influence of substance use on neuromaturation. Together, findings in this arena underscore the importance of refined research and programming efforts in adolescent health and interventional needs

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF
    corecore