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A common root for coevolution 
and substitution rate variability in 
protein sequence evolution
Francesca Rizzato1, Stefano Zamuner1, Andrea Pagnani2,3,4 & Alessandro Laio1,5*

We introduce a simple model that describes the average occurrence of point variations in a generic 
protein sequence. This model is based on the idea that mutations are more likely to be fixed at sites in 
contact with others that have mutated in the recent past. Therefore, we extend the usual assumptions 
made in protein coevolution by introducing a time dumping on the effect of a substitution on its 
surrounding and makes correlated substitutions happen in avalanches localized in space and time. The 
model correctly predicts the average correlation of substitutions as a function of their distance along 
the sequence. At the same time, it predicts an among-site distribution of the number of substitutions 
per site highly compatible with a negative binomial, consistently with experimental data. The promising 
outcomes achieved with this model encourage the application of the same ideas in the field of pairwise 
and multiple sequence alignment.

It is commonly recognized that the process of evolution of the DNA sequences coding for proteins tends to con-
serve protein structure and function more than their sequence. In particular, the coevolution of residues inside a 
protein sequence entangles substitutions between contacting sites. For example, after a mildly destabilizing muta-
tion at a site, the residues in contact with it may more easily fix mutations in order to adapt to the new situation 
and re-establish the original structural and functional balance. In the last twenty years, many investigations on 
coevolving residues have been performed showing that one can infer structural information from residue covar-
iation in large multiple sequence alignments1–7. At the same time, models of protein evolution that incorporate 
structural information have been shown to better approximate the real evolutionary process8,9. These findings 
suggest an important contribution of structural coevolution in the process of sequence evolution and ensures that 
multiple mutations can affect the fitness of a protein sequence in a non linear way, phenomenon known as epista-
sis10–13. Moreover, it has been observed that the rate at which each site fixes random mutations varies both among 
sites14–17 and in time18–20 making the process of sequence evolution more complex than a simple set of identical 
and independent Markov processes on the protein sites21. In genetics, this feature is well known. The evolutionary 
time scales are usually defined according to a “molecular clock” that was originally modeled by taking sequence 
evolution as a set of independent and identically distributed Poisson processes22,23. In the last 30 years, several 
models have tried both to explain the overdispersion of this model24–26 and to propose more reliable ways to 
estimate evolutionary times27 both within neutral theory of evolution and invoking natural selection. Recently, 
it was shown that defining the evolutionary time scales according to the molecular clock is intrinsically biased, 
especially for proteins belonging to complex organisms, in which most of the sequence codes for complex struc-
tural motifs where random mutations are unlikely, and only highly correlated changes are possible28. Violations 
from the simple framework predicted by molecular clock and neutral theory can be quantified, for example, by 
estimating the so-called overlap ratio, namely the number of sites mutated more than once divided by the number 
of sites where at least a mutation took place28.

In the context of substitution rate variability, Fitch and Markowitz18 theorized that only a limited number of 
protein sites at a time can fix mutations, and when this happens other residues coupled with them will gain muta-
tional freedom. This phenomenon would produce groups of COncomitantly VARIable codONS (for simplicity 
covarions) which vary over time in a correlated way. Unfortunately, despite this initial qualitative intuition, most 
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of the quantitative implementations of the covarion model29,30 had to sacrifice the inclusion of any spatial pattern 
of covariation for the sake of computability.

In the line of thought introduced by the covarion model we here propose a simple model to describe the time 
evolution of the substitution rates of protein sites involved in structural and functional stability by explicitly 
including spatial and temporal interdependence. The core idea is that the probability of a mutation to be fixed at a 
site is enhanced if this site is in spatial proximity with other recently mutated sites, mimicking the mechanism of 
compensatory mutations. At variance with standard coevolutionary models, we assume that this mechanism acts 
only for a finite time: if compensatory mutations do not take place in a few generations the substitution rates of 
the neighboring sites go back to their baseline value as if the initial substitution was effectively forgotten. This, as 
we will show, allows reproducing several non trivial features observed in protein sequence evolution by a simple 
model.

Our model accurately reproduces the experimental patterns of along-chain conditional probability of sub-
stitutions in alignments in the sequence identity range 60–90%. Moreover, the number of substitutions per site 
produced by our model is well described by a negative binomial distribution, as generally found in phylogenetic 
analysis. The shape parameter of this negative binomial distribution falls in a realistic range and increases for 
growing evolutionary time in qualitative accordance with experimental data. This indicates that the model repro-
duces, at least qualitatively, a realistic distribution of substitution rates.

Our model predicts that substitutions take place in avalanches localized not only in three-dimensional space, 
as commonly predicted by coevolution, but also in time.

The simplicity of this model lies in an implementation which neglects the specific sequence, focusing only on 
contact maps and on the set of times of the last mutation of each site. Our results foster the hypothesis that the 
variability of substitution rates, both along-chain and in time, is strongly connected with coevolution and that a 
mutation triggers indeed the acceptance of other mutations in nearby sites only for a limited time. The minimal 
model described here, even if simple, may provide a handy implementation of combined space and time variation 
of substitution rates that might be included in more complex models. For example, it may be combined with a 
model of codon or amino acid substitutions31–34.

Results
Model.  We developed a minimal dynamic model to describe the substitution rates in protein sequence evolu-
tion. Here mutations in the neighborhood of recently mutated sites have increased chances to be fixed by natural 
selection. For simplicity we model only substitutions, i.e. mutations fixed during the evolutionary process, and 
neglect those mutations which are destined to vanish. We will then indifferently label the time of appearance of 
a substitution as its time of mutation or time of substitution. This approximation becomes acceptable when deal-
ing, as in our case, with time scales longer than the interval between the appearance and fixation of a mutation. 
This model accounts for realistic contact probabilities between the protein sites by means of model contact maps 
extracted from PDB structures35 hereafter denoted by C, with Ci,k = 1 if sites i and k are in contact and Ci,k = 0 
otherwise (see Materials and Methods for more details). Under the working hypothesis that a mutation at any 
given residue increases the mutation rate of all its spatially close neighbors, we model the substitution rate of site 
i at time t by

∑= + − −r t r J C t t( ) exp[ ( )]
(1)

i

k
i k k0 ,

where the sum runs over all protein sites and tk corresponds to the time of the last mutation at site k. All times 
are measured in units of an implicit memory time and are thus dimensionless. There are two different terms 
involved in the right-hand side of Eq. (1). The first term consists in a constant rate r0 describing the mutational 
background, which for simplicity we first assume to be uniform. The second term accounts for the increase in the 
rate determined by mutations in one of the contacting residues. The role of the memory kernel exp[−(t − tk)] is 
to progressively reduce the impact of a substitution on the rest of the chain as time passes: if no other substitution 
appears in the neighborhood, after a sufficient amount of time, the substitution rates of that zone recovers their 
unperturbed value r0. From a biological point of view, this mimics the case in which a mutation keeps being 
transmitted from generation to generation without the early emergence of any compensatory mutation. In other 
words, this process mimics the occurrence of neutral mutations, i.e. mutations that are likely to have no signifi-
cant detrimental effect on the protein structure and function. The inclusion of a memory kernel in Eq. 1 is the key 
novelty introduced in our model.

With this model, we perform a set of simulations in each of which we simulate the temporal evolution of two 
sequences which split at time zero from a common ancestor and are characterized by an empirical contact map 
sampled from real PDB structures (see Materials and Methods). The two sequences at time zero are identical and 
characterized by the same mutational history. With time passing, we keep track of the number of mutated sites 
and of the number of substitutions per site in the two branches. We then group these simulations by fraction of 
mutated sites and perform quantitative analysis separately for each sequence identity range s by averaging on 
different realizations of contact maps to compare them with data from real sequences.

We show in the supplementary material that the results depend very little from the value of r0 in the limit of 
small r0 (Fig. S2), while major differences are due to parameter J. The assumption of a unique r0 for all sites is here 
made for simplicity and will be relaxed in the section  Two-class model, to mimic the variability of the likelihood 
of neutral mutations along the protein sequence observed in multiple sequence alignment.

Notice that, since we do not include any information on the precise sequence of amino acids, each sequence 
S in our model is only characterized by a length L and by the times of latest mutation for each site {tk}k = 1, …, L. 
For the same reason, our estimate of the sequence identity after a given set of substitutions is only a lower bound, 
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because it does not take into account the possibility that subsequent substitutions at the same site may restore the 
initial amino acid.

Along-chain conditional probability of substitutions.  We prepared several sets of ungapped local 
alignments of at least 80 residues starting from the UniRef database36, one per chosen sequence identity range 
(four bins respectively at 60–62%, 70–72%, 80–82% and 90–92%). We always use pairwise alignments in which 
one of the proteins is human, and the analysis is performed only for proteins with relatively high sequence iden-
tity with the human reference. This automatically excludes the vast majority of proteins belonging to simple 
organisms, such as yeast, where evolution can take place by different mechanisms28. For each sequence identity 
bin we collected at most one alignment per cluster per window of sequence identity to avoid uneven sampling 
(see precise procedure description in sec. Materials and Methods). Each alignment was translated to a binary 
sequence, with 0 corresponding to two identical paired amino acids (a persistence) and 1 to different paired 
residues (a substitution).

For each analyzed sequence identity range s, we first investigate the along-chain conditional probability of 
finding a substitution d sites away from another one, P d( )s

data , in the real pairwise alignment sets just described 
(purple curves in Fig. 1). This quantity exhibits a strong correlation decreasing with the distance. In the 
long-distance regime the conditional probability of observing two substitutions is, as expected, approximately 
equal to the single-point substitution probability.

Especially in the curves at lower sequence identity, the experimental pattern is perturbed by a short-range 
periodic modulation which is made evident by peaks in the conditional probability at distances of 3–4,7,10–11 
and 15 amino acids. This modulation almost completely disappears after filtering out the sequences that JPred437 
predicts to have a fraction of α-helical residues larger than 38% (see Fig. S1 in SI). This is a strong hint that the 
spatial correlation is related with the structural contacts between residues.

We then compare P d( )s
data  with the corresponding predictions of our models. We have here jointly optimized 

r0 and J on the four analyzed sequence identity ranges, obtaining J = 0.02 and r0 = 0.0004 (see Figs. S2 and S3 in 
SI respectively for different values of r0 and for separate optimizations at different sequence identities). The orange 
lines in Fig. 1 show the conditional probability of substitution for four different sequence identities as predicted 
by our model. It is evident that the model accurately reproduces the experimental probabilities in each investi-
gated case. Sizable deviations from experimental data are visible only for 10 < d < 20 at 90% of sequence identity. 
This deviation may be due to our requirement of ungapped alignments (see Materials and Methods for more 
details), which at low sequence identity seems to select more structured regions with respect to higher sequence 
identity. With this in mind, it is then natural to expect, at different sequence identities, slightly different contact 
probabilities and, therefore, slightly different optimal values of J. In practice, the deviations of these values, which 

Figure 1.  Conditional probability Ps(d) of observing a mutation d sites away from another mutation at the 
sequence identities s respectively 60–62%, 70–72%, 80–82% and 90–92%. Model (J = 0.02 and r0 = 0.0004) in 
orange and data in purple.
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we attributed to the structural non uniformity in the dataset, are negligible. For simplicity we therefore consider 
both r0 and J as constant in the whole range of considered sequence identities.

Distribution of the number of substitutions per site.  In most algorithms for phylogenetic reconstruc-
tion based on likelihood maximization, the among-site rate variability is modeled by a Γ-distribution14,15,38 whose 
shape parameter α is estimated from the distribution of the number of substitutions per site39,40. Indeed, when 
dealing with a mixture of Poisson processes characterized by Γ-distributed rates, the number of substitutions per 
site is necessarily distributed according to a negative binomial whose shape parameter is the same α. The proba-
bility of observing k substitutions at a site is then:

α α
α α
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where 〈k〉 is the average number of substitutions per site computed from the data and α is the parameter to 
be estimated.

We here show that also our model produces distributions for p(k|α, 〈k〉) which are statistically compatible 
with a negative binomial, consistently with what inferred for real substitutions from phylogenetic trees40. These 
simulations are performed with the same values of J = 0.02 and r0 = 0.0004 discussed in the previous section.

In Fig. 2 we show the normalized histogram of the number of substitutions per site k as simulated by our 
model at four different sequence identities. On top of each histogram we plot its weighted fit with a negative 
binomial (see Materials and Methods for the procedure). The negative binomial distribution well reproduces the 
statistics of the substitutions obtained by our model in all four cases.

It is important to notice that in the proposed model each site has a rate that changes in time. This is very 
different to what happens in other models, for example those in which substitution rates are Γ-distributed but 
constant in time14,15,40. The shape parameter α is obtained by fitting to Eq. 2 the histogram of the number of 
substitutions per site in a given time interval. Therefore α characterizes the distribution of time-averaged sub-
stitution rates rather than instantaneous rates. As we reduce the sequence identity, the time interval over which 
we mediate grows, making the distribution of time-averaged rates diverge progressively from the distribution of 
instantaneous rates, becoming broader and broader. The solid line in panel a) of Fig. 3 quantifies this phenom-
enon by showing the value of α obtained by fitting to Eq. 2 the number of substitutions per site obtained by our 
model at different sequence identities. Similar results are found in real data, as also shown among others by19,41. 
In particular, to allow a visual qualitative comparison, the panel (b) in Fig. 3 shows the progressive growth in the 
estimate of α for decreasing average sequence identity when estimated from the multiple sequence alignments of 

Figure 2.  Weighted fit of the normalized histogram of the number of substitutions k per site to a negative 
binomial distribution at various sequence identities. It returns the best-fit value for α displayed in the key. The 
rms of residuals of these fits are respectively, from top-left to bottom-right: 1.9, 2.1, 0.33 and 1.3.
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five Pfam large families (see Materials and Methods for details). The values of α in panel (b) at growing sequence 
identity are estimated on smaller and smaller phylogenetic trees; thus these estimates become progressively less 
reliable, explaining the noisy cloud of points at sequence identity larger than 0.7. The increase of α predicted by 
our model is larger than the one observed in the examples of phylogenetic trees shown in figure. This indicates 
that the model introduced in this work reproduces this phenomenon only qualitatively. As we are going to see in 
the next section, introducing in the model a variability in the spontaneous substitution rate improves the quali-
tative agreement.

Two-class model.  The significant variation of α observed in our model, much bigger than what is found in 
real protein families, reasonably depends, among other effects, on our simplifying approximation of equal dynam-
ics on all sites (neutral theory approximation). This assumption is known to be too simplistic: indeed in real 
proteins, flexible regions are typically more prone to fix mutations than structured regions. Moreover, part of the 
sequence codes for structural regions which are essential for the function of the proteins where the neutral theory 
cannot be considered a valid description28. In complex organisms, such as the ones considered in this study, the 
fraction of residues belonging to structural regions can be large. To verify the hypothesis that larger variations of 
α are due to the approximation of equal dynamics, we process the PDB structures used to build the contact matri-
ces with the software STRIDE42, and classify each residue in one of two categories: structured or unstructured. 
Then, we make them evolve according to slightly different patterns. Both classes still obey Eq. 1, but with different 
parameters. For simplicity, we associate the same J2class (different from before) to both classes, but we give them a 
different capability to fix new mutations (different r0). In particular, this capability will be very small for struc-
tured residues and we approximate it to zero. Therefore, structured residues will be characterised by =r 0S

0  and 
=J JS class2 , and unstructured residues by rUNS

0  and =J JUNS class2 . We call this modified version of our model the 
two-class model. We optimise the two free parameters J2class and rUNS

0  by comparing the conditional probabilities 
−P d( )s

two class  on the four sequence identity ranges as done in the previous sessions (Fig. S4 in SI), and we obtain the 
optimal values = .J 0 021class2  and = .r 0 01UNS

0 .
When fitting to a negative binomial the histogram of the number of substitutions per site obtained with this 

two-class model, we find indeed smaller α variations: these values are shown in dashed line in panel (a) of Fig. 3 
and, as supposed, present a much smaller increase at low sequence identity. Also in this case, the negative bino-
mial distribution describes the distribution of the number of substitution per site fairly well (see Fig. S5 in SI). 
These results qualitatively demonstrate that allowing sites to differ in their average inclination to accept mutations 
leads to much more realistic estimates on α with respect to a model in which all sites are statistically identical. We 
also compute the overlap ratio28 in the two versions of the model in the analysed sequence identity bins and found 
that in all cases this value is bigger with the two-class model (see Table 1 in the Supplementary Material), showing 
once again that including information on structural variability makes the model more realistic.

Discussion
Protein coevolution studies showed that substitutions exhibit a strong three dimensional spatial correlation due 
to compensatory mutations, which in turn is reflected on a correlation along the protein sequence. On the other 
hand, the substitution rates vary significantly among sites14–17 and in time18–20. Here we show how these two 
phenomena can be qualitatively described together by a simple model based on the idea that mutations may 
perturb the stability and functionality of a protein by introducing a frustration which dumps down in time. As 
a consequence, all sites that are in contact with a mutated one are themselves stimulated to accept mutations in 
order, for instance, to reduce frustration again. This idea has already emerged in the domain of protein sequence 
coevolution1–7: the novel ingredient that we introduce in this work is that this perturbation acts only for a finite 
time. In fact, if an isolated mutation has persisted for many generations, it is likely that it is neutral and has no 

Figure 3.  Panel (a): estimated α by the model described by Eq. 1 and by the two-class model as a function 
of the sequence identity. The value of α is estimated by fitting the number of substitutions per site to a 
negative binomial (Eq. 2). Panel (b): Estimate of α for five Pfam families obtained by FastTree-249 on subtrees 
characterized by different average sequence identities (procedure described in Materials and Methods).
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effects on the fitness of the protein, so does not need compensation. We presented a model based on this idea, 
which revisits the covarion model proposed for the first time by18.

This model accurately reproduces the observable average along-chain correlation of substitutions in a large 
range of sequence identity. This suggests that the observed correlation may be due to structural contacts between 
residue pairs, as also confirmed by the peaks at the α-helical contact periodicity that vanish when the predicted 
α-helices are removed from the dataset (Fig. S1 in SI).

The two parameters of our simple models seem to fit the data fairly well at all the analyzed sequence identities. 
This suggests that sequence evolution can be approximated, in this framework, by a non-equilibrium stationary 
process, with features resembling those of the growth of a sand pile43.

Remarkably, the same model also reproduces a distribution of the number of substitutions per site largely 
consistent with a negative binomial, a distribution also empirically observed in phylogenetics. An overestimate 
of the shape parameter of this negative binomial distribution increasing with evolutionary time is visible both in 
real data and in our simulations and, at least in the model, is due to the time variation of the rates. We have also 
shown that the larger variability of the shape parameter in our model with respect to real data is likely to be due 
to the approximation of equal dynamics at all sites. This does not take into account the well known fact that in 
large regions of the proteins belonging to complex organisms random mutations are very unlikely. Indeed, we 
have shown that a trivial inclusion of differences in the mutation rates among sites (different r0 in our example) is 
already enough to bring the shape parameter closer to the one observed in real data.

The model introduced in this work enhances the probability of substitutions taking place at similar times and 
at contacting protein sites. This process can be summarized by saying that our model produces avalanches of sub-
stitutions confined not only in space, as commonly expected by coevolution, but also in time. It is difficult to check 
if these avalanches exist in real cases, because to perform the check one needs to know the protein sequence in all 
intermediate evolutionary steps. This can however be done in a few cases where this strict condition is luckily ver-
ified. One of these cases is the evolution of the viral protein influenza Hemagglutinin: this protein, being impor-
tant for vaccine conception and being then exposed to strong evolutionary pressure, varies quickly and has been 
largely studied and systematically sequenced in the last forty years44. In Fig. 4 panel (a) all substitutions found in 
the time evolution of yearly-based consensus sequences of Influenza Hemagglutinin between 1981 and 2015 are 
shown by squares or crosses placed in correspondence of its site (x axis) and its year of appearance (y axis). Gray 
crosses correspond to isolated or coupled substitutions, while the squares are colored in such a way that substi-
tutions tagged by the same color are spatially and temporarily related. What we call “substitution avalanches” are 
these sets of spatially and temporarily related substitutions. Even if the exact partitioning in avalanches depicted 
in Fig. 4 is a consequence of the clustering approach (detailed in section  Avalanches detection and data from 
influenza hemagglutinin), the correlation of the substitution events is qualitatively visible even ignoring the color 
codes. Similar patterns can be observed in simulated evolution obtained by our model for a generic protein in the 
pdb (panel b). The case of Influenza Hemagglutinin is a clear case of positive selection, with variations happening 
on very fast time scales. It would be interesting to check if coupled spatial and temporal correlations are observed 
in more neutral frameworks, but we are not aware of any dataset giving similar information on time scales large 
enough to allow a quantitative comparisons with our model.

Our results seem to underline the importance of accounting for coevolution in the modeling of substitution 
rates. The minimal model described here may provide a handy implementation of combined space and time 
variation of substitution rates that might be included in a more complex framework and, for example, combined 
with a model of codon or amino acid substitutions. Moreover, in view of the observed pattern of along-chain 

Figure 4.  Panel (a): Substitution avalanches on Influenza Hemagglutinin from 1980 to 201544. Panel (b): 
Avalanches of simulated substitutions (Eq. 1 with J = 0.02 and r0 = 0.0004) on an example structure (PDB 
16pk, chain H). In both panels each cross or square represents one substitution which took place on the 
site corresponding to the x value and in the year corresponding to the y value. Gray crosses stand for either 
isolated substitutions or avalanches made by two substitutions. The squares label the remaining substitutions 
and are colored according to the avalanche to which they belong according to the procedure described in 
section  Avalanches detection and data from influenza hemagglutinin. The colored regions highlight some of the 
avalanches, and are only guides for the eye. Notice that the same avalanche can be split in two or more regions 
along the sequence, since a contact can be present even between sites which are not close along the sequence.
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correlation of substitutions, it would be interesting to account for an increased probability of nearby substitutions 
into the existing model and algorithms for protein sequence alignment, especially for pairwise alignments where 
no a priori information is available on the substitution rate or on the structural and functional constraints.

Materials and Methods
Experimental along-chain correlation of substitutions.  We retrieved the protein sequences used to 
test our model from UniRef36, an arrangement of the UniProt database45 that clusters sequences above a certain 
sequence identity threshold. We downloaded the clusters at 50% of sequence identity with at least one human 
sequence. The alignments were downloaded on 23/07/2015 from UniRef at http://www.uniprot.org/help/uniref 
with query: [query:count: [2 TO*] length: [50 TO*] taxonomy:Homo sapiens (Human) [9606] AND identity:0.5].

From each of these clusters we detected the human sequence and aligned it with each of the others. We splitted 
the full range of 50–100% of sequence identity into windows of 2% of sequence identity each (50–52%, 52–54%, 
…, 98–100%) and then collected at most one alignment per cluster per window of sequence identity, to avoid 
weighting bigger clusters more. Here we used only the alignments at 60–62%, 70–72%, 80–82% and 90–92%. 
Sequences were aligned locally by the algorithm water46 in the emboss software package47 and only ungapped 
parts of at least 80 residues were considered.

Each alignment was translated to a binary sequence, with 0 corresponding to two identical paired amino acids 
(a persistence) and 1 to different paired residues (a substitution).

For each window of sequence identity s, we computed the overall conditional probability of observing a sub-
stitution d sites away from another substitution as the fraction

=
+

P d N d
N d N d

( ) ( )
( ) ( ) (3)

s
data s

s s

1

0 1

where Ns
1(d) and Ns

0(d) are respectively the overall observed number of 1 and 0 found at a distance d from 
another substitution in the considered set of alignments. The first and last 5 residues of each alignments have been 
neglected to reduce boundary effects.

Contact probability between protein sites.  As model contact maps we downloaded the top500H data-
base35, where the highly precise structures of 500 proteins are provided. For each structure, we computed the 
contact map by defining that two residues are in contact if their alpha-carbons are nearer than 10 Å.

We then ran STRIDE42 on these 500 structures to separate residues involved in secondary structured from 
those that are not. This separation has been used in the two-class model described in section Two-class model.

Simulations and parameter optimization.  Having observed that for the typical lengths in the test set 
of observed alignments the results depends on the lengths of the ungapped protein sequences, for each range of 
sequence identity we simulated many sequence lengths L whose distribution is compatible with the experimental 
one and obtained the desired quantities as averages over these different realizations (see Fig. S6 in SI for details).

The evolution of the rates on sequences of a given length L was simulated by randomly choosing one of the 
structures longer than L, selecting a portion of the protein of the desired length and evolving the protein on its 
whole length until when the selected portion reaches the desired sequence identity.

The evolution is performed by discretizing the time into small time steps dt and by computing the probability 
of substitution at each site i in such time intervals by:

= ⋅p t r t dt( ) ( )i i

Each site i mutates during that time step if a random number drawn from a uniform distribution in [0, 1] is 
smaller than pi. We verified that, with our choice of dt, two or more substitutions along the chain occurred at the 
same time step in less than 1% of the cases.

Before each simulation we ran an equilibration dynamics, allowing the initial times tk (see Eq. 1) to reach val-
ues compatible with a stationary distribution. After the equilibration we evolved two sequences in parallel, both 
descending from the same original sequence (same initial tk values). During each simulation we kept track of the 
number of mutated sites as well as of the number of substitutions per site (ki). We simulated the evolution of the 
two sequences until they reach the desired sequence identity. For each length we simulated many contact maps 
(being L part of a bigger protein among the 500 analyzed) and averaged on both lengths and contact maps. We 
assume that consecutive substitutions at the same site can not bring the site back to its initial amino acid type and 
that independent substitutions in the two branches do not give the same results. In other words, the number of 
mutated sites is simply the number of sites that mutated at least once in at least one of the two branches. A conse-
quence of this fact is that what we call sequence identity is, more precisely, a lower bound of the sequence identity. 
However we expect this fact not to dramatically change any of the showed result.

We computed, according to our model, the conditional probability of finding a substitution d sites away from 
another one in sequences characterized by sequence identity s by

=
+

P d N d
N d N d

( ) ( )
( ) ( ) (4)

s
model s

s s

1

0 1

Here N d( )s
1  and N d( )s

0  are respectively the total number of substitutions and persistences found at a distance d in 
the comparison of pairs of simulated sequences evolved with our model up to a sequence identity s. Also in this 
case the first and last 5 residues of each simulated sequences have been neglected to reduce boundary effects. For 
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each range of sequence identity the simulations were stopped at the average sequence identity of the correspond-
ing set of alignments. The optimization of parameters J and r0 have been accomplished by minimizing the root 
mean square displacement (RMSD) between the experimental P d( )s

data  (Eq. 3) and Ps
model in the four analyzed 

sequence identity ranges (60–62%, 70–72%, 80–82%, 90–92%). Only data corresponding to distances d along the 
chain shorter than 30 amino acids have been used during this optimization.

The weighted fit of Fig. 2 have been performed by gnuplot, with the errors computed according to the Poisson 
distribution. In the process of fitting, the average value of the distribution has been constrained to the experimen-
tal average value and so only the value of α was optimized.

Estimation of α in pfam.  We selected five Pfam families48 characterized by large multiple sequence align-
ments: PF00042, PF00211, PF01523, PF01641 and PF03453. For each of these families we downloaded the full 
multiple sequence alignment (download on March 7th 2016) and we built its phylogenetic tree (T0) by FastTree249 
with the inclusion of the Γ-correction. Given a tree, the level of each of its subtree is given by the number of edges 
between the root of the tree and the root of the subtree. Thus, starting from the root of this tree (T0), let us label T1 
its 1-level subtree containing the largest number of leaves. From the common ancestor of subtree T1, we label T2 
its most populated 1-level subtree, and so on until the leaves are reached. For each of these subtrees, we computed 
both the average sequence identity between the leaves, 〈seqID〉, and a new estimate of α recomputed from the 
sequences of that subtree only (again by FastTree2). These are the quantities shown in Fig. 3 panel (b). Subtrees of 
high level, associated to high average sequence identity, are characterized by a very small phylogenetic tree; thus, 
as evident from Fig. 3 panel (b), the associated value of α is difficult to determine and get progressively noisier 
and less reliable.

Avalanches detection and data from influenza hemagglutinin.  The sequences of Influenza 
Hemagglutinin used in Fig. 4 were downloaded on April 27th 2016 from the NIAID Influenza Research Database44 
by selecting protein data of virus type A and subtype H3N2 for the period 1981–2015 in Homo sapiens (complete 
segments only). Each sequence is characterized by a year, so its temporal evolution can be easily reconstructed. 
On average, the sequences of the same year are much more similar among themselves than to those of other 
years50. So, for each year, we computed a consensus sequence which has, at each position, the most common 
amino acid and we studied the evolution in time of these consensus sequences. From the PDB database51 we 
retrieved the entry 2WR0, containing one x-ray structure of the homotrimer of Influenza Hemagglutinin.

The sequences downloaded from the Influenza Research Database have all the same length and so they can be 
considered as a multiple sequence alignment. Using the program PdbTool (https://github.com/christophfeinauer/
PdbTool.jl) we mapped each position in the sequence dataset to the corresponding residue on the PDB file.

From the PDB file we built a contact map between the protein residues by considering in contact two residues 
whose α-carbons are nearer than 8.5 Å. We mapped this contact map on the indexes of our MSA obtaining matrix 
Ci,j, with i and j in the range 1 to 566 and Ci,j = 1 if the residues corresponding to sites i and j on the PDB are in 
contact and Ci,j = 0 otherwise. Not all the 566 residues in the MSA were mapped on a residue of the PDB, so we 
also added a contact between these sites not mapped on the the PDB file and their along-chain neighbors.

We compared the consensus sequences of consecutive years and kept track of mutations at each site i and time 
t by employing a mutation matrix mi,t, where mi,t = 0 corresponds to a match between the amino acids at site i in 
the consensus sequences at times t and t − 1 and a mi,t = 1 corresponds to a mismatch (implying that a mutation 
got fixed during that year). Thus, matrix m has size 566 (sites) × 33 (years).

We built a similar matrix m also for one of our simulations on protein 16 pk, chain H (PDB name) after discre-
tizing their times to a number of bins comparable to the number of years available from influenza Hemagglutinin 
history.

From matrix m, we built an undirected graph whose nodes are labeled (i,t) by a site i and a year t and whose 
links connect nodes whose sites are in contact and whose associated times (year or bin) differ by no more than 
two units. An avalanche is then defined as a connected component of the graph.
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