86 research outputs found

    Tidal influence on high frequency harbor oscillations in a narrow entrance bay

    Get PDF
    High frequency sea level oscillations at Wells Harbor (Maine, Northeastern US), with periods in the range of several tens of minutes, display a tidally modulated response. During low tides, these sea level oscillations reach amplitudes of 10–20 cm, while during high tides they are significantly smaller. Wells Harbor is located in a low lying area with a tidal range of about 2 m and is connected to the open ocean through a narrow channel. Thus, the extent and depth of the bay significantly vary over a tidal cycle. This changing geometry determines both the resonant periods and the amplification factor of the bay. Numerical results confirm the link between observed variability and these specific topographic features. Results imply that when exceptionally energetic long waves reach the Wells Harbor entrance (as in the case of a tsunami or meteotsunami) the expected response will be significantly stronger during low tide than during high tide. Although mean sea level would be lower in the former case, the currents inside the bay would be stronger and potentially more dangerous. This tidally modulated response could be extrapolated to other sites with similar topographic characteristics. © 2014, Springer Science+Business Media Dordrecht.This work was partially performed within the NOAA/NWS project “Toward a meteotsunami warning system along the U.S. coastline (TMEWS),” Award No. NA11NWS4670005. The work of A. Amores has been funded by a JAE-PreDoc Grant from Consejo Superior de Investigaciones Científicas (CSIC) and co-funded by Programa Operativo FSE 2007–2013. M. Marcos acknowledges a “Ramon y Cajal” contract funded by the Spanish Ministry of EconomyPeer Reviewe

    Urbanisation and the loss of phylogenetic diversity in birds

    Get PDF
    Despite the recognised conservation value of phylogenetic diversity, little is known about how it is affected by the urbanisation process. Combining a complete avian phylogeny with surveys along urbanisation gradients from five continents, we show that highly urbanised environments supported on average 450 million fewer years of evolutionary history than the surrounding natural environments. This loss was primarily caused by species loss and could have been higher had not been partially compensated by the addition of urban exploiters and some exotic species. Highly urbanised environments also supported fewer evolutionary distinctive species, implying a disproportionate loss of evolutionary history. Compared with highly urbanised environments, changes in phylogenetic richness and evolutionary distinctiveness were less substantial in moderately urbanised environments. Protecting pristine environments is therefore essential for maintaining phylogenetic diversity, but moderate levels of urbanisation still preserve much of the original diversity

    The October 2012 magnitude (Mw) 7.8 earthquake offshore Haida Gwaii, Canada

    Get PDF
    Alison L. Bird et al. report on the Mw 7.8 earthquake offshore Haida Gwaii, Canada, from 2012 for the Summary of the Bulletin of the International Seismological Centre

    Tidal influence on high frequency harbor oscillations in a narrow entrance bay

    No full text
    Póster presentado en 2012 AGU Fall Meeting, celebrado del 3 al 7 de diciembre de 2012 en San Francisco, Calif. (Estados Unidos)Peer reviewe

    The Effect of an Intervention to Break the Gender Bias Habit for Faculty at One Institution: A Cluster Randomized, Controlled Trial

    No full text
    Purpose Despite sincere commitment to egalitarian, meritocratic principles, subtle gender bias persists, constraining women’s opportunities for academic advancement. The authors implemented a pair-matched, single-blind, cluster randomized, controlled study of a gender-bias-habit-changing intervention at a large public university. Method Participants were faculty in 92 departments or divisions at the University of Wisconsin–Madison. Between September 2010 and March 2012, experimental departments were offered a gender-bias-habit-changing intervention as a 2.5-hour workshop. Surveys measured gender bias awareness; motivation, self-efficacy, and outcome expectations to reduce bias; and gender equity action. A timed word categorization task measured implicit gender/leadership bias. Faculty completed a work–life survey before and after all experimental departments received the intervention. Control departments were offered workshops after data were collected. Results Linear mixed-effects models showed significantly greater changes post intervention for faculty in experimental versus control departments on several outcome measures, including self-efficacy to engage in gender-equity-promoting behaviors (P = .013). When ≥ 25% of a department’s faculty attended the workshop (26 of 46 departments), significant increases in self-reported action to promote gender equity occurred at three months (P = .007). Post intervention, faculty in experimental departments expressed greater perceptions of fit (P = .024), valuing of their research (P = .019), and comfort in raising personal and professional conflicts (P = .025). Conclusions An intervention that facilitates intentional behavioral change can help faculty break the gender bias habit and change department climate in ways that should support the career advancement of women in academic medicine, science, and engineering
    corecore