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Abstract: High frequency sea level oscillations at Wells Harbor (Maine, Northeastern 9 

US), with periods in the range of several tens of minutes, display a tidally modulated 10 

response. During low tides these sea level oscillations reach amplitudes of 10-20 cm, 11 

while during high tides they are significantly smaller. Wells Harbor is located in a low 12 

lying area with a tidal range of about 2 m and is connected to the open ocean through a 13 

narrow channel. Thus the extent and depth of the bay significantly vary over a tidal 14 

cycle. This changing geometry determines both the resonant periods and the 15 

amplification factor of the bay. Numerical results confirm the link between observed 16 

variability and these specific topographic features. Results imply that when 17 

exceptionally energetic long waves reach the Wells Harbor entrance (as in the case of a 18 

tsunami or meteotsunami) the expected response will be significantly stronger during 19 

low tide than during high tide. Although mean sea level would be lower in the former 20 

case, the currents inside the bay would be stronger and potentially more dangerous. This 21 

tidally modulated response could be extrapolated to other sites with similar topographic 22 

characteristics. 23 

 24 

1.- Introduction 25 

The topographic features of a bay or inlet determine how external energy is amplified 26 

under resonant conditions. The shape, bathymetry and configuration of the entrance to 27 

the bay define the characteristics of the major resonance modes, i.e. the seiche response, 28 

resonant frequencies and the inner basin quality factor Q (Rabinovich, 2009). 29 

The amplification factor H for long waves arriving at the coast from the open sea may 30 

be approximately given by a single mode approach (Miles and Munk, 1961) 31 
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 33 

where f is the frequency of the long waves, f0 is the fundamental resonant frequency of  34 

the bay (seiche), and Q is the quality factor,         , with r being the rate of 35 

frictional damping of the oscillations.  36 

For a bay with a long narrow entrance channel, the fundamental frequency is 37 

determined by the equation  38 

   
 

  
√
 

 

 

 
,      (2) 39 

where S is the entrance cross-section, A is the bay area, l the channel length and g the 40 

gravity acceleration (Miles and Munk, 1961; Raichlen, 1966). According to Eq. (2), the 41 

larger the bay area and the narrower the entrance for a given depth, the lower the 42 

fundamental frequency. 43 

The quality factor Q, which is a linear measure of the energy damping in the system, 44 

depends on the size and shape of the bay. In the classical work by Miles and Munk 45 

(1961), the Q-factor is related to the radiation of the wave energy, but in a more general 46 

case, internal friction has also to be taken into account. The effective Q-factor of the 47 

system is then determined by both the frictional factor, QI, and the radiational factor, QR 48 

(Garrett, 1975) where  49 

      
     

  .                                                     (3) 50 

For a narrow entrance, the radiation becomes negligible so that internal dissipation 51 

(friction) is the major effect controlling the quality factor (Raichlen, 1966).  52 

In some locations the tidal range is large enough to significantly alter the bathymetric 53 

and geometric characteristics of the region, in particular when the surrounding coastal 54 

land is relatively flat. In such cases, the Q-factor and the expected amplification and 55 

damping of the incoming waves differ during low and high tide. According to Eq. (2), 56 

the resonant frequency for the bay may also differ within the tidal cycle: it becomes 57 

lower for high tide and higher for low tide. 58 
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The tidal regime can have an additional effect on the Q-factor. Internal friction depends 59 

on the current speed and depth. So, in a tidally controlled estuary, where the major 60 

currents are related to the tides, highest speeds will occur in the bay channel during the 61 

peak ebb and flood tidal phases. Also, the tidal current amplifies when the bay area 62 

increases. So, the dissipation rate r will increase when the bay area increases and the Q-63 

factor will decrease even more strongly than in the case of a constant dissipation rate 64 

without considering the frictional effects. 65 

As indicated by equation (1), when the Q-factor is much greater than unity, the 66 

amplification factor attains its maximum very close to H
2
=Q

2
 when f=f0 (the 67 

approximation being very good for large values of Q)  then decreases to unity as f 68 

approaches 0 and goes to zero as f goes to infinity (Fig. 1). When the Q-factor decreases 69 

the maximum moves towards the origin, being located at f =0 when       . When 70 

       there is no maximum and the amplification factor is always smaller than 1.0. 71 

The wave amplitudes reduce at any non-zero frequency; i.e. H monotonically decreases 72 

with increasing frequency. These features of the bay response to incoming waves could 73 

be better explained and estimated using an equivalent circuit analogy, as was done by 74 

Miles (1971) and Cummins (2013). However, all these features are limited to a single 75 

oscillator approximation; when frequency increases, the presence of higher modes 76 

essentially change the properties of the amplification function.  77 

 78 

Figure 1: Amplification factors as a function of f/f0 for different values of Q 79 
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 80 

It is important to quantify the resonant frequencies and the Q-factor for any bay or inlet 81 

to evaluate the potential risk from energetic incoming open-ocean long waves, as in the 82 

case of tsunamis or meteotsunamis. This can be easily done numerically by means of a 83 

shallow water numerical model. The spectral ratio between oscillations inside and 84 

outside the bay enables us to estimate the resonant bay modes (seiches) and expected 85 

amplification (Q-factor). (See, for example, Monserrat et al., 1998; Rabinovich et al., 86 

1999; Liu et al., 2003). 87 

Earlier studies have not addressed the effect of tidally modulated high frequency 88 

responses in semi-enclosed basins, likely because the effects were expected to be small. 89 

In this paper, we examine sea level observations at Wells Harbor (Maine, the 90 

northeastern coast of the United States) where the effect of the tidal range on the 91 

resonant properties of the bay is substantial. Wells Harbor is located in a low lying area 92 

with a tidal range of more than 2 m. Here, the surface area of the bay is significantly 93 

influenced by changing mean sea level during a tidal cycle. The available observations 94 

and data analysis are described in Section 2. The observations are interpreted based on a 95 

numerical model described in Section 3. A comparison between the observations and 96 

numerical results is presented in Section 4. The implications of the observed 97 

phenomenon for the case of tsunami or meteotsunami, and extrapolation of the results to 98 

other regions, are also discussed. 99 

2. Observations 100 

In this study, we use tide gauge observations from two harbors with different 101 

geometries. Wells Harbor is located in in a lagoon in the Gulf of Maine (Fig. 2), in a 102 

flood plain with a tidal range of more than 2 m and connected to the open sea through a 103 

narrow channel (Fig. 3). As a result, the extent of this lagoon is significantly affected by 104 

changes in sea level during a typical daily tidal cycle.  The nearby harbor at Fort Point 105 

(Fig. 2), whose geometry is not appreciably altered by the tidally varying sea level, was 106 

used for comparison.  107 
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 108 

Figure 2: Location of the Wells Harbor and Fort Point tide gauges on the east coast of the 109 

United States. 110 

 111 

Figure 3: Bathymetry of the tidal basin containing the Wells Harbor tide gauge during low tide 112 

(a) and high tide (b). The maps have been computed by subtracting and adding 1 m, 113 

respectively, to the mean harbor bathymetry. The location of the tide gauge is indicated by a red 114 

circle. 115 
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 116 

Tide gauge sea-level observations in the Gulf of Maine were obtained from the NOAA 117 

CO-OPS website http://opendap.co-ops.nos.noaa.gov. The sea level time series for 2008 118 

used in this study for Fort Point and Wells have 6 min sampling intervals and 1 mm 119 

precision. The raw data were visually checked for spikes, gaps and discontinuities. No 120 

serious problem was detected. Some few missing points were linearly interpolated 121 

before applying a further analysis. 122 

The corrected sea level time series from Wells and Fort Point were de-tided and high-123 

pass filtered with 1-hour Kaiser-Bessel window. The observed oscillations with periods 124 

of several tens of minutes and amplitudes of 10-20 cm (Fig. 4) correspond to harbor 125 

seiches. The amplified seiches that occurred in both harbors around midnight of 16 126 

November 2008 are the result of a relatively small meteotsunami. Meteotsunamis have 127 

already been reported in the region. In particular, the event of 28
th

 October 2008 has 128 

been extensively studied (Vilibić et al., 2013).  129 

In addition to the strongest signal of the two sites being considered, the high frequency 130 

oscillations for Wells display a distinct tidal amplitude modulation, with energetic 131 

seiches during low tides and much weaker seiches during high tides (Fig. 4a). No such 132 

tidal modulation is observed at Fort Point in the neighboring harbor (Fig. 4b). 133 

 134 

 135 

http://opendap.co-ops.nos.noaa.gov/


7 

 

 136 

Figure 4: Original data time series (grey) and de-tided data (black) recorded at (a) Wells and (b) 137 

Fort Point during November 2008. De-tided data have also been high-pass filtered with 1-hour 138 

window. 139 

 140 

The meteotsunami of 16 November 2008 was observed at Fort Point during almost the 141 

entire 12-hour tidal cycle but, in contrast, at Wells Harbor it is only apparent during the 142 

low tide, becoming there even more energetic than at Fort Point. This response is 143 

clearly associated with the pulse-like seiche behavior observed at Wells and related to 144 

the tidal regime.   145 

The frequency response of the de-tided time series at Wells was analyzed using a Morlet 146 

wavelet (Fig. 5). Energy content in the range from 10 min to 2 h was computed for a 4.5 147 

days period (November 13
th

-18
th

). For comparison, we also show the tidal cycle in Fig. 148 

5. Tidal amplitudes modulate not only the amplification response to the incoming 149 

energy, which is higher during the low tide, but also the frequency of the seiche 150 

oscillations. Therefore, when particularly large high frequency energy reaches the Wells 151 

Harbor entrance (as in the case of the above mentioned meteotsunami), the expected 152 

response is significantly greater during low tide than during high tide. Although the 153 

mean sea level would be lower in the former case and the flooding risk reduced, the 154 

currents inside the bay would be much stronger and potentially more dangerous.  155 

 156 
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 157 

 158 

 159 

Figure 5: Wavelet analysis of sea level recorded at Wells over 4.5 days in November 2008.  160 

Tides at this location are also shown and the times of low tide are indicated with vertical white 161 

lines in the wavelet plot. 162 

 163 

 164 

 165 

 166 

3. Numerical model 167 

  168 

A linear, shallow-water equation numerical model was used to compute the seiche 169 

response for two scenarios with bathymetries corresponding to a tide that varies by ±1 170 

m (see Fig. 3). The bathymetry, with cell size of 1/3 arc-second (about 10 m), has been 171 

obtained from the NOAA National Geophysical Data Center (Lim et al., 2009). 172 

The model finite-difference formulation is similar to the one used in the TUNAMI N2 173 

model (Imamura, 1996). The model was forced externally by specifying prescribed 174 
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incident waves at the open boundaries. The incident waves had a ‘‘red noise’’ spectra, 175 

similar to the observed background noise in the open ocean (Fine et al., 2009). The open 176 

boundary radiation condition in the model has the form 177 

 178 

  

  
 
 

 

  

  
   ,     (4) 179 

 180 

where  represents sea level elevation at time t, c is the wave speed, n is directed normal 181 

to the model boundary and y0 is the forcing term at the entrance, which is computed 182 

using a stationary autoregressive (AR) model of the first order: 183 

                             yk=ayk-1+           (5) 184 

 185 

Here yk is the autoregression output which is then used as the open boundary condition, 186 

a is the regression coefficient (0 < a < 1), and  is a random ‘‘white noise’’ process.  187 

The normalized spectrum of yk  (and consequently 
  

  
 ) has the form 188 

 189 

      |   
   ( )       |

  
,                                (6) 190 

 191 

where t is the sampling interval of the input time series. It is clear then that the 192 

incoming waves had a “red noise” spectrum 193 

 194 

   |   
   ( )       |

   

    (     )
    (7) 195 

 196 

which is equal to (6) multiplied by the factor sin
-2

(2ft) as obtained by integrating (4) 197 

over time. 198 

The spectrum (7) is a monotonic function of f, decreasing as f
--2

 for frequencies less than 199 

fa, where )log()2( 1 atfa
   and with a higher rate (up to f

--4
) for frequencies 200 

higher than fa. 201 
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We have used 1120/1  sfa  (i.e. the boundary frequency has been defined as 0.5 min-202 

1
), thus, the incoming waves have a f

--2
 dependence for the seiche frequency band.  203 

The computational domain (Fig 3) has grid dimensions of 1190 rows × 1081 columns 204 

and an (x, y) grid size of 7.5 m by 10.3 m (or 1/3 arc second in spherical coordinates). 205 

The time step used was 0.23 s, and results were saved at prescribed grid points every 1 206 

min. 207 

To model the wave dissipation in the bay, we included a linearized Manning friction of 208 

the form 209 

                                                                  (8) 210 

where U(x,y) is a tidal current speed, g is the acceleration of gravity, n=0.03 is the 211 

Manning coefficient and h is the water depth. We have assumed that the tidal current 212 

dominates the flow and that the wave-induced velocity is parallel to the tidal velocity.  213 

To estimate the tidal speed to be used in our simulations, we computed a low-frequency 214 

response during both low and high tide cases. Results are presented in Fig. 6. Due to the 215 

much larger water body during high tide, the simulated tidal currents are approximately 216 

five times stronger than at low tide for the same rate of sea level change.  217 

 218 

Figure 6: Numerically computed tidal current speeds during low and high tides. 219 
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We simulated the bay response for 640 hrs ( 27 days) for two conditions corresponding 220 

to low and high water. Results of the simulated waves at the grid points corresponding 221 

to the tide gauge locations were stored for analysis.   222 

 223 

 4. Discussion and conclusions 224 

 225 

The output of the numerical model and the tide gauge observations at Wells Harbor 226 

have been compared in the frequency domain (Fig. 7).  227 
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 228 

Figure 7: Sea level spectra during low and high tide at Wells Harbor using (a) observations and 229 

(b) numerical results. The spectrum for a site located outside Wells Harbor is shown in (b). 230 

Observational spectra have been computed by averaging of 50 individual spectra (DoF = 150). 231 

Numerical spectra have DoF= 148. 232 

 233 
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For the observations, spectra have been computed separately for low and high tides 234 

aiming to estimate the resonant characteristics for the two situations. To do so, 6.4-hour 235 

segments centered at high and low tides were selected.  Since the reference sea level 236 

during low and high tide varies significantly due to the tropical-equatorial and spring-237 

neap cycles, only those segments for which the reference sea level ranged between 1.1 238 

m and 0.9 m above and below the yearly mean sea level have been selected. The spectra 239 

were computed with a Kaiser-Bessel window of 2
6
=64 points with 2 degrees of freedom 240 

(DoF) (Emery and Thomson, 2001). This was repeated a total of 50 times with 241 

segments randomly selected from those fulfilling the above mentioned criterion for one 242 

entire yearly record. Then, in order to decrease the confidence intervals, the 243 

corresponding spectra were averaged independently for high tide and low tide segments. 244 

The initial DoF = 2 DoF were subsequently increased to DoF = 150. 245 

The limitation of the tidal cycle does not exist in the output of the numerical model, as 246 

this was run with a uniform sea level. We computed then the spectra with series of 247 

38400 points (~26.7 days) and used a half-overlapping Kaiser-Bessel window of 248 

2
10

=1024 points. With these selected values we obtain DoF = 148, i.e. almost the same 249 

as for the observed spectra.  250 

The observational spectra (Fig.7a) show a peak at about 18 min, detected in both low 251 

and high tide spectra, although it becomes more energetic and slightly displaced 252 

towards higher periods during low tide. The second peak, at about 49 min, is only 253 

apparent and very energetic during low tide. The comparison between the two spectra 254 

demonstrates how the seiche response inside the harbor is changing through the tidal 255 

cycle. These changes are associated with the bathymetric changes in the harbor as the 256 

mean sea level varies. 257 

The results for the simulated spectra for a site located outside the bay and at the tide 258 

gauge location are shown in Fig. 7b. During low tide, the spectrum significantly 259 

increases at the fundamental frequency (about 0.02 min
-1

, i.e period of 53 min) as 260 

compared with the energy outside the bay. At higher frequencies, the spectrum inside 261 

the bay decreases faster than outside, thus the amplification factor becomes smaller than 262 

unity. At the first bay mode (~24 min), the energy of the low-tide seiche increases again 263 

but the amplification factor remains below 1.0. At high tide, the wave spectrum inside 264 
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the bay is much lower than the spectrum outside the bay for all frequencies, indicating 265 

that the Q-factor is less than 1.0. The high frequency peak found around 11 min is 266 

above the Nyquist frequency for the observational spectra (12 min period) and could 267 

only be observed if the sampling rate for the observations was increased.  268 

Comparing numerical simulations inside and outside the bay, the spectral amplification 269 

at the fundamental frequency during low tide can be estimated as ~30. Therefore, the Q-270 

factor, following equation (1), should be of around 5-6, and accordingly, the linear 271 

damping rate would be approximately 0.02 min
-1

. The bottom friction is expected to be 272 

significantly higher at the entrance channel during high tide because the bay area is 273 

much larger and the cross-section of the channel remains almost unchanged. As a result, 274 

the estimated Q-factor for high tide would be as low as 0.4.  275 

It should be noticed that the wave spectra result from a topographic response combined 276 

with the incoming wave energy and, in this respect, the forcing of the model may differ 277 

from that for an actual event. To avoid this limitation, and remove the influence of the 278 

incoming wave energy in the comparison between observations and numerical results, 279 

we estimated the spectral ratios between low and high tide spectra (Fig. 8). Both 280 

“observational” and “computed” spectral ratios have quite similar shapes, but are not 281 

totally identical. The computed peak at 55 min is shifted towards higher frequencies in 282 

the observations (to a period of approximately 38.5 min). However, the second peak at 283 

23-24 min is clearly observed in both the computations and the observations. The actual 284 

values of the spectra are also similar, although those for the numerical values are 285 

slightly larger.  286 

In general, the numerical results support our assumptions and demonstrate that the 287 

observed tide-modulated variability in seiche oscillations at Wells Harbor is definitively 288 

associated with changes in the basin geometry between low and high tides. The 289 

numerical model correctly reproduces the period of 23-min for the seiche oscillations 290 

affected by the bathymetric changes, although it slightly overestimates their actual 291 

amplification. The variation between the peaks and troughs in spectral ratios determined 292 

from the numerical results is also much more pronounced than in the observations. The 293 

observed differences are not surprising and could be attributed to the fact that the 294 

simulations were run with a constant reference sea level, whereas the actual tidal range 295 
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is continuously varying during the 12-hour tidal cycle. It is expected then that spectra 296 

computed using observations will be smoother due to this averaging. A more 297 

sophisticated numerical model, including a “tidally modulated” reference sea level, 298 

would likely provide better agreement with the observations, but the effect we wanted to 299 

show becomes apparent enough even for a simple model with a constant bathymetry. 300 

 301 

Figure 8: Spectral ratios between the spectra estimated for low and high tide series at Wells  302 

Harbor for both observations (black) and numerical computations (grey). 303 

 304 

The results shown in this paper for a particular harbor suggest that the tidal regime for 305 

some basins significantly influences the seiche activity and should be taken into account 306 

when assessing the seiche characteristics in the basin. Primarily, this is important for 307 

harbors with a high tidal range and extensive flat area surrounding the harbor. The 308 

expected response of the basin to intense incoming waves, in particular those associated 309 

with a tsunami or meteotsunami, may significantly vary during the tidal cycle. 310 

 311 
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