353 research outputs found
Recommended from our members
Microscopic Examination of a Corrosion Front in Spent Nuclear Fuel
Spent uranium oxide nuclear fuel hosts a variety of trace chemical constituents, many of which must be sequestered from the biosphere during fuel storage and disposal. In this paper we present synchrotron x-ray absorption spectroscopy and microscopy findings that illuminate the resultant local chemistry of neptunium and plutonium within spent uranium oxide nuclear fuel before and after corrosive alteration in an air-saturated aqueous environment. We find the plutonium and neptunium in unaltered spent fuel to have a +4 oxidation state and an environment consistent with solid-solution in the UO{sub 2} matrix. During corrosion in an air-saturated aqueous environment, the uranium matrix is converted to uranyl U(VI)O{sub 2}{sup 2+} mineral assemblage that is depleted in plutonium and neptunium relative to the parent fuel. At the corrosion front interface between intact fuel and the uranyl-mineral corrosion layer, we find evidence of a thin ({approx}20 micrometer) layer that is enriched in plutonium and neptunium within a predominantly U{sup 4+} environment. Available data for the standard reduction potentials for NpO{sup 2+}/Np{sup 4+} and UO{sub 2}{sup 2+}/U{sup 4+} couples indicate that Np(IV) may not be effectively oxidized to Np(V) at the corrosion potentials of uranium dioxide spent nuclear fuel in air-saturated aqueous solutions. Neptunium is an important radionuclide in dose contribution according to performance assessment models of the proposed U. S. repository at Yucca Mountain, Nevada. A scientific understanding of how the UO{sub 2} matrix of spent nuclear fuel impacts the oxidative dissolution and reductive precipitation of neptunium is needed to predict its behavior at the fuel surface during aqueous corrosion. Neptunium would most likely be transported as aqueous Np(V) species, but for this to occur it must first be oxidized from the Np(IV) state found within the parent spent nuclear fuel [1]. In the immediate vicinity of the spent fuel's surface the redox and nucleation behavior is likely to promote/enhance nucleation of NpO{sub 2} and Np{sub 2}O{sub 5}. Alternatively, Np may be incorporated into uranyl (UO{sub 2}{sup 2+}) alteration phases [2]. In some cases, less-soluble elements such as plutonium will be enriched near the surface of the corroding fuel [3]. We have used focused synchrotron x-rays from the MRCAT beam line at the Advanced Photon Source (APS) at Argonne National Lab to examine a specimen of spent nuclear fuel that had been subject to 10 years of corrosion testing in an environment of humid air and dripping groundwater at 90 C [4]. We find evidence of a region, approximately 20 microns in thickness, enriched in plutonium and neptunium at the corrosion front that exists between the uranyl silicate alteration mineral rind and the unaltered uranium oxide fuel (Figures 1 and 2). The uranyl silicate is itself found to be depleted in these transuranic elements relative to their abundance relative to uranium in the parent fuel. This suggests a low mobility of these components owing to a resistance to oxidize further in the presence of a UO{sub 2}{sup 2+}/U{sup 4+} couple [5]
Hydrothermal alteration of eudialyte-hosted critical metal deposits : fluid source and implications for deposit grade
MV, AB and AF were funded by the NERC-funded SOS RARE consortium, grant number NE/M010856/1.Eudialyte-hosted critical metal deposits potentially represent major sources of rare earth elements (REE), zirconium and niobium. Here, we study the chemical and isotopic composition of fresh and altered eudialyte in nepheline syenite from the Ilímaussaq Complex, Greenland, one of the world’s largest known eudialyte-hosted deposits. Late-magmatic hydrothermal alteration caused partial replacement of primary magmatic eudialyte by complex pseudomorph assemblages of secondary Zr-, Nb-, and REE-minerals. Three secondary assemblage types are characterised by the zirconosilicates catapleiite, gittinsite and zircon, respectively, of which the catapleiite type is most common. To investigate elemental exchange associated with alteration and to constrain the nature of the metasomatic fluids, we compare trace elements and Sm/Nd isotope compositions of unaltered eudialyte crystals and their replaced counterparts from five syenite samples (three catapleiite-type, one gittinsite-type, and one zircon-type assemblage). Trace element budgets for the catapleiite-type pseudomorphs indicate a 15–30% loss of REE, Ta, Nb, Zr, Sr and Y relative to fresh eudialyte. Moreover, the gittinsite- and zircon-type assemblages record preferential heavy REE (HREE) depletion (≤50%), suggesting that the metasomatic fluids mobilised high field strength elements. Initial Nd isotope ratios of unaltered eudialyte and catapleiite- and gittinsite-type pseudomorphs are indistinguishable, confirming a magmatic fluid origin. However, a higher initial ratio and stronger HREE depletion in the zircon-type pseudomorphs suggests a different source for the zircon-forming fluid. Although alteration reduces the metal budget of the original eudialyte volume, we infer that these elements re-precipitate nearby in the same rock. Alteration, therefore, might have little effect on overall grade but preferentially separates heavy and light REE into different phases. Targeted processing of the alteration products may access individual rare earth families (heavy vs. light) and other metals (Zr, Nb, Ta) more effectively than processing the fresh rock.Publisher PDFPeer reviewe
Classes of exact Einstein-Maxwell solutions
We find new classes of exact solutions to the Einstein-Maxwell system of
equations for a charged sphere with a particular choice of the electric field
intensity and one of the gravitational potentials. The condition of pressure
isotropy is reduced to a linear, second order differential equation which can
be solved in general. Consequently we can find exact solutions to the
Einstein-Maxwell field equations corresponding to a static spherically
symmetric gravitational potential in terms of hypergeometric functions. It is
possible to find exact solutions which can be written explicitly in terms of
elementary functions, namely polynomials and product of polynomials and
algebraic functions. Uncharged solutions are regainable with our choice of
electric field intensity; in particular we generate the Einstein universe for
particular parameter values.Comment: 16 pages, To appear in Gen. Relativ. Gravi
Comparison of deep inelastic electron-photon scattering data with the HERWIG and PHOJET Monte Carlo models
Deep inelastic electron-photon scattering is studied in the range from 1.2 to 30 GeV using the LEP1 data taken with the ALEPH, L3 and OPAL detectors at centre-of-mass energies close to the mass of the Z boson. Distributions of the measured hadronic final state are corrected to the hadron level and compared to the predictions of the HERWIG and PHOJET Monte Carlo models. For large regions in most of the distributions studied the results of the different experiments agree with one another. However, significant differences are found between the data and the models. Therefore the combined LEP data serve as an important input to improve on the Monte Carlo models.Deep inelastic electron-photon scattering is studied in the Q**2 range from 1.2 to 30 GeV**2 using the LEP1 data taken with the ALEPH, L3 and OPAL detectors at centre-of-mass energies close to the mass of the Z boson. Distributions of the measured hadronic final state are corrected to the hadron level and compared to the predictions of the HERWIG and PHOJET Monte Carlo models. For large regions in most of the distributions studied the results of the different experiments agree with one another. However, significant differences are found between the data and the models. Therefore the combined LEP data serve as an important input to improve on the Monte Carlo models
Measurement of and charged current inclusive cross sections and their ratio with the T2K off-axis near detector
We report a measurement of cross section and the first measurements of the cross section
and their ratio
at (anti-)neutrino energies below 1.5
GeV. We determine the single momentum bin cross section measurements, averaged
over the T2K -flux, for the detector target material (mainly
Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory
frame kinematics of 500 MeV/c. The
results are and $\sigma(\nu)=\left( 2.41\
\pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}^{2}R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)=
0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions
Data taken with the ALEPH detector at LEP1 have been used to search for gamma
gamma production of the glueball candidates f0(1500) and fJ(1710) via their
decay to pi+pi-. No signal is observed and upper limits to the product of gamma
gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have
been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) <
0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV
at 95% confidence level.Comment: 10 pages, 3 figure
Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV
A search for pair-production of supersymmetric particles under the assumption
that R-parity is violated via a dominant LQDbar coupling has been performed
using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV.
The observed candidate events in the data are in agreement with the Standard
Model expectation. This result is translated into lower limits on the masses of
charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for
m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81
GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the
95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure
First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes
We overview nonequilibrium Green function combined with density functional
theory (NEGF-DFT) modeling of independent electron and phonon transport in
nanojunctions with applications focused on a new class of thermoelectric
devices where a single molecule is attached to two metallic zigzag graphene
nanoribbons (ZGNRs) via highly transparent contacts. Such contacts make
possible injection of evanescent wavefunctions from ZGNRs, so that their
overlap within the molecular region generates a peak in the electronic
transmission. Additionally, the spatial symmetry properties of the transverse
propagating states in the ZGNR electrodes suppress hole-like contributions to
the thermopower. Thus optimized thermopower, together with diminished phonon
conductance through a ZGNR/molecule/ZGNR inhomogeneous structure, yields the
thermoelectric figure of merit ZT~0.5 at room temperature and 0.5<ZT<2.5 below
liquid nitrogen temperature. The reliance on evanescent mode transport and
symmetry of propagating states in the electrodes makes the
electronic-transport-determined power factor in this class of devices largely
insensitive to the type of sufficiently short conjugated organic molecule,
which we demonstrate by showing that both 18-annulene and C10 molecule
sandwiched by the two ZGNR electrodes yield similar thermopower. Thus, one can
search for molecules that will further reduce the phonon thermal conductance
(in the denominator of ZT) while keeping the electronic power factor (in the
nominator of ZT) optimized. We also show how often employed Brenner empirical
interatomic potential for hydrocarbon systems fails to describe phonon
transport in our single-molecule nanojunctions when contrasted with
first-principles results obtained via NEGF-DFT methodology.Comment: 20 pages, 6 figures; mini-review article prepared for the special
issue of the Journal of Computational Electronics on "Simulation of Thermal,
Thermoelectric, and Electrothermal Phenomena in Nanostructures", edited by I.
Knezevic and Z. Aksamij
Constraints on anomalous QGC's in interactions from 183 to 209 GeV
The acoplanar photon pairs produced in the reaction e(+) e(-) - → vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings
- …