111 research outputs found

    Asymptotics of self-similar solutions to coagulation equations with product kernel

    Full text link
    We consider mass-conserving self-similar solutions for Smoluchowski's coagulation equation with kernel K(ξ,η)=(ξη)λK(\xi,\eta)= (\xi \eta)^{\lambda} with λ(0,1/2)\lambda \in (0,1/2). It is known that such self-similar solutions g(x)g(x) satisfy that x1+2λg(x)x^{-1+2\lambda} g(x) is bounded above and below as x0x \to 0. In this paper we describe in detail via formal asymptotics the qualitative behavior of a suitably rescaled function h(x)=hλx1+2λg(x)h(x)=h_{\lambda} x^{-1+2\lambda} g(x) in the limit λ0\lambda \to 0. It turns out that h1+Cxλ/2cos(λlogx)h \sim 1+ C x^{\lambda/2} \cos(\sqrt{\lambda} \log x) as x0x \to 0. As xx becomes larger hh develops peaks of height 1/λ1/\lambda that are separated by large regions where hh is small. Finally, hh converges to zero exponentially fast as xx \to \infty. Our analysis is based on different approximations of a nonlocal operator, that reduces the original equation in certain regimes to a system of ODE

    Barriers to the development of palliative care in Western Europe

    Get PDF
    The Eurobarometer Survey of the <i>EAPC Task Force on the Development of Palliative Care in Europe</i> is part of a programme of work to produce comprehensive information on the provision of palliative care across Europe. Aim: To identify barriers to the development of palliative care in Western Europe. Method: A qualitative survey was undertaken amongst boards of national associations, eliciting opinions on opportunities for, and barriers to, palliative care development. By July 2006, 44/52 (85%) European countries had responded to the survey; we report here on the results from 22/25 (88%) countries in Western Europe. Analysis: Data from the Eurobarometer survey were analysed thematically by geographical region and by the degree of development of palliative care in each country. Results: From the data contained within the Eurobarometer, we identified six significant barriers to the development of palliative care in Western Europe: (i) Lack of palliative care education and training programmes (ii) Lack of awareness and recognition of palliative care (iii) Limited availability of/knowledge about opioid analgesics (iv) Limited funding (v) Lack of coordination amongst services (vi) Uneven palliative care coverage. Conclusion: Findings from the EAPC Eurobarometer survey suggest that barriers to the development of palliative care in Western Europe may differ substantially from each other in both their scope and context and that some may be considered to be of greater significance than others. A number of common barriers to the development of the discipline do exist and much work still remains to be done in the identified areas. This paper provides a road map of which barriers need to be addressed

    An adaptive numerical method for the Vlasov equation based on a multiresolution analysis.

    Get PDF
    International audienceIn this paper, we present very first results for the adaptive solution on a grid of the phase space of the Vlasov equation arising in particles accelarator and plasma physics. The numerical algorithm is based on a semi-Lagrangian method while adaptivity is obtained using multiresolution analysis

    Solving the Vlasov equation for one-dimensional models with long range interactions on a GPU

    Full text link
    We present a GPU parallel implementation of the numeric integration of the Vlasov equation in one spatial dimension based on a second order time-split algorithm with a local modified cubic-spline interpolation. We apply our approach to three different systems with long-range interactions: the Hamiltonian Mean Field, Ring and the self-gravitating sheet models. Speedups and accuracy for each model and different grid resolutions are presented

    Mathematical description of bacterial traveling pulses

    Get PDF
    The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on {\em E. coli} have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This model can account for recent experimental observations with {\em E. coli}. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion). In addition we can capture quantitatively the main characteristics of the pulse such as the speed and the relative size of tails. This work opens several experimental and theoretical perspectives. Coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance the stiffness of the signal integration process turns out to have a strong effect on collective motion. Furthermore the bottom-up scaling allows to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion

    A fast spectral method for the Boltzmann equation for monatomic gas mixtures

    Get PDF
    Although the fast spectral method has been established for solving the Boltzmann equation for single-species monatomic gases, its extension to gas mixtures is not easy because of the non-unitary mass ratio between the di↵erent molecular species. The conventional spectral method can solve the Boltzmann collision operator for binary gas mixtures but with a computational cost of the order m3rN6, where mr is the mass ratio of the heavier to the lighter species, and N is the number of frequency nodes in each frequency direction. In this paper, we propose a fast spectral method for binary mixtures of monatomic gases that has a computational cost O(pmrM2N4 logN), where M2 is the number of discrete solid angles. The algorithm is validated by comparing numerical results with analytical Bobylev- Krook-Wu solutions for the spatially-homogeneous relaxation problem, for mr up to 36. In spatially-inhomogeneous problems, such as normal shock waves and planar Fourier/Couette flows, our results compare well with those of both the numerical kernel and the direct simulation Monte Carlo methods. As an application, a two-dimensional temperature-driven flow is investigated, for which other numerical methods find it difficult to resolve the flow field at large Knudsen numbers. The fast spectral method is accurate and elective in simulating highly rarefied gas flows, i.e. it captures the discontinuities and fine structures in the velocity distribution functions

    Uncertainty quantification for kinetic models in socio-economic and life sciences

    Full text link
    Kinetic equations play a major rule in modeling large systems of interacting particles. Recently the legacy of classical kinetic theory found novel applications in socio-economic and life sciences, where processes characterized by large groups of agents exhibit spontaneous emergence of social structures. Well-known examples are the formation of clusters in opinion dynamics, the appearance of inequalities in wealth distributions, flocking and milling behaviors in swarming models, synchronization phenomena in biological systems and lane formation in pedestrian traffic. The construction of kinetic models describing the above processes, however, has to face the difficulty of the lack of fundamental principles since physical forces are replaced by empirical social forces. These empirical forces are typically constructed with the aim to reproduce qualitatively the observed system behaviors, like the emergence of social structures, and are at best known in terms of statistical information of the modeling parameters. For this reason the presence of random inputs characterizing the parameters uncertainty should be considered as an essential feature in the modeling process. In this survey we introduce several examples of such kinetic models, that are mathematically described by nonlinear Vlasov and Fokker--Planck equations, and present different numerical approaches for uncertainty quantification which preserve the main features of the kinetic solution.Comment: To appear in "Uncertainty Quantification for Hyperbolic and Kinetic Equations

    Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up

    Get PDF
    We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact

    An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit

    Get PDF
    International audienceIn this paper we propose a numerical scheme to solve the Kac model of the Boltzmann equation for multiscale rarefied gas dynamics. This scheme is uniformly stable with respect to the Knudsen number, consistent with the fluid-diffusion limit for small Knudsen numbers, and with the Kac equation in the kinetic regime. Our approach is based on the micro-macro decomposition which leads to an equivalent formulation of the Kac model that couples a kinetic equation with macroscopic ones. This method is validated with various test cases and compared to other standard methods
    corecore