517 research outputs found
Long term follow up of direct oral anticoagulants and warfarin therapy on stroke, with all-cause mortality as a competing risk, in people with atrial fibrillation: sentinel network database study
Background
We investigated differences in risk of stroke, with all-cause mortality as a competing risk, in people newly diagnosed with atrial fibrillation (AF) who were commenced on either direct oral anticoagulants (DOACs) or warfarin treatment.
Methods and results
We conducted a retrospective cohort study of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database (a network of 500 English general practices). We compared long term exposure to DOAC (n = 5,168) and warfarin (n = 7,451) in new cases of AF not previously treated with oral anticoagulants. Analyses included: survival analysis, estimating cause specific hazard ratios (CSHR), Fine-Gray analysis for factors affecting cumulative incidence of events occurring over time and a cumulative risk regression with time varying effects.We found no difference in CSHR between stroke 1.08 (0.72–1.63, p = 0.69) and all-cause mortality 0.93 (0.81–1.08, p = 0.37), or between the anticoagulant groups. Fine-Gray analysis produced similar results 1.07 (0.71–1.6 p = 0.75) for stroke and 0.93 (0.8–1.07, p = 0.3) mortality. The cumulative risk of mortality with DOAC was significantly elevated in early follow-up (67 days), with cumulative risk decreasing until 1,537 days and all-cause mortality risk significantly decreased coefficient estimate:: -0.23 (-0.38–0.01, p = 0.001); which persisted over seven years of follow-up.
Conclusions
In this large, contemporary, real world primary care study with longer follow-up, we found no overall difference in the hazard of stroke between warfarin and DOAC treatment for AF. However, there was a significant time-varying effect between anti-coagulant regimen on all-cause mortality, with DOACs showing better survival. This is a key methodological observation for future follow-up studies, and reassuring for patients and health care professionals for longer duration of therapy
Toward Understanding Massive Star Formation
Although fundamental for astrophysics, the processes that produce massive
stars are not well understood. Large distances, high extinction, and short
timescales of critical evolutionary phases make observations of these processes
challenging. Lacking good observational guidance, theoretical models have
remained controversial. This review offers a basic description of the collapse
of a massive molecular core and a critical discussion of the three competing
concepts of massive star formation:
- monolithic collapse in isolated cores
- competitive accretion in a protocluster environment
- stellar collisions and mergers in very dense systems
We also review the observed outflows, multiplicity, and clustering properties
of massive stars, the upper initial mass function and the upper mass limit. We
conclude that high-mass star formation is not merely a scaled-up version of
low-mass star formation with higher accretion rates, but partly a mechanism of
its own, primarily owing to the role of stellar mass and radiation pressure in
controlling the dynamics.Comment: 139 pages, 18 figures, 5 tables, glossar
Characterization of a small cryptic plasmid from endophytic Pantoea agglomerans and its use in the construction of an expression vector
A circular cryptic plasmid named pPAGA (2,734 bp) was isolated from Pantoea agglomerans strain EGE6 (an endophytic bacterial isolate from eucalyptus). Sequence analysis revealed that the plasmid has a G+C content of 51% and contains four potential ORFs, 238(A), 250(B), 131(C), and 129(D) amino acids in length without homology to known proteins. The shuttle vector pLGM1 was constructed by combining the pPAGA plasmid with pGFPmut3.0 (which harbors a gene encoding green fluorescent protein, GFP), and the resulting construct was used to over-express GFP in E. coli and P. agglomerans cells. GFP production was used to monitor the colonization of strain EGE6gfp in various plant tissues by fluorescence microscopy. Analysis of EGE6gfp colonization showed that 14 days after inoculation, the strain occupied the inner tissue of Eucalyptus grandis roots, preferentially colonizing the xylem vessels of the host plants
Haplotypes of the bovine IgG2 heavy gamma chain in tick-resistant and tick-susceptible breeds of cattle
Bovines present contrasting, heritable phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus. Tick salivary glands produce IgG-binding proteins (IGBPs) as a mechanism for escaping from host antibodies that these ectoparasites ingest during blood meals. Allotypes that occur in the constant region of IgG may differ in their capacity to bind with tick IGBPs; this may be reflected by the distribution of distinct allotypes according to phenotypes of tick infestations. In order to test this hypothesis, we investigated the frequency of haplotypes of bovine IgG2 among tick-resistant and tick-susceptible breeds of bovines. Sequencing of the gene coding for the heavy chain of IgG2 from 114 tick-resistant (Bos taurus indicus, Nelore breed) and tick-susceptible (B. t. taurus, Holstein breed) bovines revealed SNPs that generated 13 different haplotypes, of which 11 were novel and 5 were exclusive of Holstein and 3 of Nelore breeds. Alignment and modeling of coded haplotypes for hinge regions of the bovine IgG2 showed that they differ in the distribution of polar and hydrophobic amino acids and in shape according to the distribution of these amino acids. We also found that there was an association between genotypes of the constant region of the IgG2 heavy chain with phenotypes of tick infestations. These findings open the possibility of investigating if certain IgG allotypes hinder the function of tick IGBPs. If so, they may be markers for breeding for resistance against tick infestations
A fresh look at the evolution and diversification of photochemical reaction centers
In this review, I reexamine the origin and diversification of photochemical reaction centers based on the known phylogenetic relations of the core subunits, and with the aid of sequence and structural alignments. I show, for example, that the protein folds at the C-terminus of the D1 and D2 subunits of Photosystem II, which are essential for the coordination of the water-oxidizing complex, were already in place in the most ancestral Type II reaction center subunit. I then evaluate the evolution of reaction centers in the context of the rise and expansion of the different groups of bacteria based on recent large-scale phylogenetic analyses. I find that the Heliobacteriaceae family of Firmicutes appears to be the earliest branching of the known groups of phototrophic bacteria; however, the origin of photochemical reaction centers and chlorophyll synthesis cannot be placed in this group. Moreover, it becomes evident that the Acidobacteria and the Proteobacteria shared a more recent common phototrophic ancestor, and this is also likely for the Chloroflexi and the Cyanobacteria. Finally, I argue that the discrepancies among the phylogenies of the reaction center proteins, chlorophyll synthesis enzymes, and the species tree of bacteria are best explained if both types of photochemical reaction centers evolved before the diversification of the known phyla of phototrophic bacteria. The primordial phototrophic ancestor must have had both Type I and Type II reaction centers
Immunological imbalance between IFN-³ and IL-10 levels in the sera of patients with the cardiac form of Chagas disease
The immune response is crucial for protection against disease; however, immunological imbalances can lead to heart and digestive tract lesions in chagasic patients. Several studies have evaluated the cellular and humoral immune responses in chagasic patients in an attempt to correlate immunological findings with clinical forms of Chagas disease. Moreover, immunoglobulins and cytokines are important for parasitic control and are involved in lesion genesis. Here, cytokine and IgG isotype production were studied, using total epimastigote antigen on sera of chagasic patients with indeterminate (IND, n = 27) and cardiac (CARD, n = 16) forms of the disease. Samples from normal, uninfected individuals (NI, n = 30) were use as controls. The results showed that sera from both IND and CARD patients contained higher levels of Trypanosoma cruzi-specific IgG1 (IgG1) antibodies than sera from NI. No difference in IgG2 production levels was observed between NI, IND and CARD patients, nor was a difference in IL-10 and IFN-³ production detected in the sera of IND, CARD and NI patients. However, IND patients displayed a positive correlation between IL-10 and IFN-³ levels in serum, while CARD patients showed no such correlation, indicating an uncontrolled inflammatory response in CARD patients. These findings support the hypothesis that a lack of efficient regulation between IFN-³ and IL-10 productions in CARD patients may lead to cardiac immunopathology.CNP
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Adolescent health in rural Ghana: A cross-sectional study on the co-occurrence of infectious diseases, malnutrition and cardio-metabolic risk factors.
In sub-Saharan Africa, infectious diseases and malnutrition constitute the main health problems in children, while adolescents and adults are increasingly facing cardio-metabolic conditions. Among adolescents as the largest population group in this region, we investigated the co-occurrence of infectious diseases, malnutrition and cardio-metabolic risk factors (CRFs), and evaluated demographic, socio-economic and medical risk factors for these entities. In a cross-sectional study among 188 adolescents in rural Ghana, malarial infection, common infectious diseases and Body Mass Index were assessed. We measured ferritin, C-reactive protein, retinol, fasting glucose and blood pressure. Socio-demographic data were documented. We analyzed the proportions (95% confidence interval, CI) and the co-occurrence of infectious diseases (malaria, other common diseases), malnutrition (underweight, stunting, iron deficiency, vitamin A deficiency [VAD]), and CRFs (overweight, obesity, impaired fasting glucose, hypertension). In logistic regression, odds ratios (OR) and 95% CIs were calculated for the associations with socio-demographic factors. In this Ghanaian population (age range, 14.4-15.5 years; males, 50%), the proportions were for infectious diseases 45% (95% CI: 38-52%), for malnutrition 50% (43-57%) and for CRFs 16% (11-21%). Infectious diseases and malnutrition frequently co-existed (28%; 21-34%). Specifically, VAD increased the odds of non-malarial infectious diseases 3-fold (95% CI: 1.03, 10.19). Overlap of CRFs with infectious diseases (6%; 2-9%) or with malnutrition (7%; 3-11%) was also present. Male gender and low socio-economic status increased the odds of infectious diseases and malnutrition, respectively. Malarial infection, chronic malnutrition and VAD remain the predominant health problems among these Ghanaian adolescents. Investigating the relationships with evolving CRFs is warranted
Evolutionary analysis of mitochondrially encoded proteins of toad-headed lizards, Phrynocephalus, along an altitudinal gradient.
BACKGROUND: Animals living at high altitude must adapt to environments with hypoxia and low temperatures, but relatively little is known about underlying genetic changes. Toad-headed lizards of the genus Phrynocephalus cover a broad altitudinal gradient of over 4000 m and are useful models for studies of such adaptive responses. In one of the first studies to have considered selection on mitochondrial protein-coding regions in an ectothermic group distributed over such a wide range of environments, we analysed nineteen complete mitochondrial genomes from all Chinese Phrynocephalus (including eight genomes sequenced for the first time). Initial analyses used site and branch-site model (program: PAML) approaches to examine nonsynonymous: synonymous substitution rates across the mtDNA tree. RESULTS: Ten positively selected sites were discovered, nine of which corresponded to subunits ND2, ND3, ND4, ND5, and ND6 within the respiratory chain enzyme mitochondrial Complex I (NADH Coenzyme Q oxidoreductase). Four of these sites showed evidence of general long-term selection across the group while the remainder showed evidence of episodic selection across different branches of the tree. Some of these branches corresponded to increases in altitude and/or latitude. Analyses of physicochemical changes in protein structures revealed that residue changes at sites that were under selection corresponded to major functional differences. Analyses of coevolution point to coevolution of selected sites within the ND4 subunit, with key sites associated with proton translocation across the mitochondrial membrane. CONCLUSIONS: Our results identify mitochondrial Complex I as a target for environment-mediated selection in this group of lizards, a complex that frequently appears to be under selection in other organisms. This makes these lizards good candidates for more detailed future studies of molecular evolution
- …