212 research outputs found

    Responsabilidad médica. Tribunal y proceso

    Get PDF

    Application of antimicrobial microcapsules on agrotextiles

    Full text link
    [EN] The aim of this work was to develop a functional biodegradable nonwoven with antimicrobial microcapsules maintaining the stability and biodegradability of the nonwoven for use in agriculture applications. The nonwoven was obtained using hemp fibers by Wetlaid technology. Microcapsules were prepared by co-extrusion/gelling method with alginate as shell and oregano oil as core material. The microcapsules were developed to protect and control release of oregano oil. Microcapsules were incorporated on the nonwoven by coating method using a natural polymer as a graft material. After incorporating microcapsules, the nonwoven was subjected to several tests in order to determinate the microcapsules fixation and their functionality. The nonwovens were characterized for their antimicrobial activity against different kinds of bacteria and fungi. Nonwoven loaded with microcapsules was found to show good antimicrobial activity in comparison with nonwoven that was not loaded with microcapsules.The authors thank IVACE (Institut Valencià de Competitivitat Empresarial, Spain) and FEDER (Fondo Europeo de Desarrollo Regional, Europe) for the financial support.Ferrándiz, M.; Capablanca, L.; Garcia-Sanoguera, D.; Bonet-Aracil, M. (2017). Application of antimicrobial microcapsules on agrotextiles. Journal of Agricultural Chemistry and Environment. 6(1):62-82. doi:10.4236/jacen.2017.61004S62826

    Boldine-derived Alkaloids inhibit the activity of DNA topoisomerase I and growth of Mycobacterium tuberculosis

    Get PDF
    The spread of multidrug-resistant isolates of Mycobacterium tuberculosis requires the discovery of new drugs directed to new targets. In this study, we investigated the activity of two boldine-derived alkaloids, seconeolitsine (SCN) and N-methyl-seconeolitsine (N-SCN), against M. tuberculosis. These compounds have been shown to target DNA topoisomerase I enzyme and inhibit growth of Streptococcus pneumoniae. Both SCN and N-SCN inhibited M. tuberculosis growth at 1.95-15.6 µM, depending on the strain. In M. smegmatis this inhibitory effect correlated with the amount of topoisomerase I in the cell, hence demonstrating that this enzyme is the target for these alkaloids in mycobacteria. The gene coding for topoisomerase I of strain H37Rv (MtbTopoI) was cloned into pQE1 plasmid of Escherichia coli. MtbTopoI was overexpressed with an N-terminal 6-His-tag and purified by affinity chromatography. In vitro inhibition of MtbTopoI activity by SCN and N-SCN was tested using a plasmid relaxation assay. Both SCN and N-SCN inhibited 50% of the enzymatic activity at 5.6 and 8.4 µM, respectively. Cleavage of single-stranded DNA was also inhibited with SCN. The effects on DNA supercoiling were also evaluated in vivo in plasmid-containing cultures of M. tuberculosis. Plasmid supercoiling densities were -0.060 in cells untreated or treated with boldine, and -0.072 in 1 × MIC N-SCN treated cells, respectively, indicating that the plasmid became hypernegatively supercoiled in the presence of N-SCN. Altogether, these results demonstrate that the M. tuberculosis topoisomerase I enzyme is an attractive drug target, and that SCN and N-SCN are promising lead compounds for drug development

    Asymmetric Organocatalysis in Deep Eutectic Solvents

    Get PDF
    The recent advances in asymmetric organocatalysis using eutectic mixtures as a reaction medium are revised in this mini‐review. In addition, the first enantioselective transformations using chiral eutectic solvents, which play the role of a green medium and organocatalyst, are described. In this mini‐review we intend to deepen not only in the synthetic aspects of asymmetric organocatalysis in eutectic mixtures, but also in the fundamental issues that seem to be essential for a successful development of this promising, and at the same time challenging, methodology.This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (MICINN, PGC2018-096616-B-I00), the University of Alicante (VIGROB-173 and VIGROB-316FI), and the University of Pisa (PRA_2018_36)

    Generation, establishment and characterization of a pluripotent stem cell line (CVTTHi001-A) from primary fibroblasts isolated from a patient with activated PI3 kinase delta syndrome (APDS2)

    Get PDF
    APDS2 is caused by mutations in PIK3R1 gene resulting in constitutive PI3Kδ activation. PI3Kδ is predominantly expressed in leukocytes and plays critical roles in regulating immune responses. Here we first derived fibroblast primary cells from a skin biopsy of a patient carrying a heterozygous single T deletion in intron 11 of the PIK3R1 gene. We next present the derivation of an induced pluripotent stem cell (iPS) line using a non-integrative reprogramming technology. Pluripotent-related hallmarks are further shown, including: iPSCs self-renewal and expression of pluripotent and differentiation markers after in vitro differentiation towards embryonic germ layers, assessed by RT-PCR and immunofluorescence

    Factors affecting inter-regional academic scientific collaboration within Europe: the role of economic distance

    Get PDF
    This paper offers some insights into scientific collaboration (SC) at the regional level by drawing upon two lines of inquiry. The first involves examining the spatial patterns of university SC across the EU-15 (all countries belonging to the European Union between 1995 and 2004). The second consists of extending the current empirical analysis on regional SC collaboration by including the economic distance between regions in the model along with other variables suggested by the extant literature. The methodology relies on co-publications as a proxy for academic collaboration, and in order to test the relevance of economic distance for the intensity of collaboration between regions, we put forward a gravity equation. The descriptive results show that there are significant differences in the production of academic scientific papers between less-favoured regions and core regions. However, the intensity of collaboration is similar in both types of regions. Our econometric findings suggest that differences in scientific resources (as measured by R&D expenditure) between regions are relevant in explaining academic scientific collaborations, while distance in the level of development (as measured by per capita GDP) does not appear to play any significant role. Nevertheless, other variables in the analysis, including geographical distance, specialization and cultural factors, do yield significant estimated coefficients, and this is consistent with the previous literature on regional SC

    Genetic variation associated with cardiovascular risk in autoimmune diseases

    Get PDF
    Autoimmune diseases have a higher prevalence of cardiovascular events compared to the general population. The objective of this study was to investigate the genetic basis of cardiovascular disease (CVD) risk in autoimmunity. We analyzed genome-wide genotyping data from 6,485 patients from six autoimmune diseases that are associated with a high socio-economic impact. First, for each disease, we tested the association of established CVD risk loci. Second, we analyzed the association of autoimmune disease susceptibility loci with CVD. Finally, to identify genetic patterns associated with CVD risk, we applied the cross-phenotype meta-analysis approach (CPMA) on the genome-wide data. A total of 17 established CVD risk loci were significantly associated with CVD in the autoimmune patient cohorts. From these, four loci were found to have significantly different genetic effects across autoimmune diseases. Six autoimmune susceptibility loci were also found to be associated with CVD risk. Genome-wide CPMA analysis identified 10 genetic clusters strongly associated with CVD risk across all autoimmune diseases. Two of these clusters are highly enriched in pathways previously associated with autoimmune disease etiology (TNF? and IFN? cytokine pathways). The results of this study support the presence of specific genetic variation associated with the increase of CVD risk observed in autoimmunity
    corecore