641 research outputs found

    Revision of the family Carabodidae (Acari, Oribatida) VII. Redefinition of the genus Malgasodes; redescription of M. curvisetus Mahunka, 2000; and complementary description of M. hungarorum Mahunka, 2010. Phylogenetic relationships between Malgasodes, Bovicarabodes, Afticarabodes, Congocepheus and Cavaecarabodes are discussed

    Get PDF
    The genus Malgasodes is redefined; the type species M. curvisetus Mahunka, 2000, is redescribed by meansof studies using optic and Scanning Electron Microsopy (SEM), and a complementary description of M.hungarorum Mahunka, 2000 is included. Comparison of genera Malgasodes Mahunka, 2000, Bovicarabodes Fernandez, Theron, Rollard, 2013a, Cavaecarabodes Fernandez, Theron, Rollard, Rodriguez Castillo,2014, Afticarabodes Fernandez, Theron, Rollard, 2013b, and Congocepheus Balogh, 1958 is made. Problems concerning chaetotaxy, regressive evolution and neotrichy are explained and phylogenetic relationships between Malgasodes, Bovicarabodes, Afticarabodes, Congocepheus and Cavaecarabodes are discussed.Fil: Fernández, Néstor Alfredo. North-West University. Research Unit for Environmental Sciences and Management; Sudáfrica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; ArgentinaFil: Theron, Pieter. North-West University. Research Unit for Environmental Sciences and Management; SudáfricaFil: Rollard, Christine. Muséum National d; FranciaFil: Castillo, Elio Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Universidad Nacional de Misiones. Instituto de Biología Subtropical; Argentin

    Sulfide-binding hemoglobins: Effects of mutations on active-site flexibility

    Get PDF
    The dynamics of Hemoglobin I (HbI) from the clam Lucina pectinata, from wild-type sperm whale (SW) myoglobin, and from the L29F/H64Q/V68F triple mutant of SW, both unligated and bound to hydrogen sulfide (H2S), have been studied in molecular dynamics simulations. Features that account for differences in H2S affinity among the three have been examined. Our results verify the existence of an unusual heme rocking motion in unligated HbI that can promote the entrance of large ligands such as H2S. The FQF-mutant partially reproduces the amplitude and relative orientation of the motion of HbI's heme group. Therefore, besides introducing favorable electrostatic interactions with H2S, the three mutations in the distal pocket change the dynamic properties of the heme group. The active-site residues Gln-64(E7), Phe-43(CD1), and His-93(F8) are also shown to be more flexible in unligated HbI than in FQF-mutant and SW. Further contributions to H2S affinity come from differences in hydrogen bonding between the heme propionate groups and nearby amino acid residues.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Sulfide-binding hemoglobins: Effects of mutations on active-site flexibility

    Get PDF
    The dynamics of Hemoglobin I (HbI) from the clam Lucina pectinata, from wild-type sperm whale (SW) myoglobin, and from the L29F/H64Q/V68F triple mutant of SW, both unligated and bound to hydrogen sulfide (H2S), have been studied in molecular dynamics simulations. Features that account for differences in H2S affinity among the three have been examined. Our results verify the existence of an unusual heme rocking motion in unligated HbI that can promote the entrance of large ligands such as H2S. The FQF-mutant partially reproduces the amplitude and relative orientation of the motion of HbI's heme group. Therefore, besides introducing favorable electrostatic interactions with H2S, the three mutations in the distal pocket change the dynamic properties of the heme group. The active-site residues Gln-64(E7), Phe-43(CD1), and His-93(F8) are also shown to be more flexible in unligated HbI than in FQF-mutant and SW. Further contributions to H2S affinity come from differences in hydrogen bonding between the heme propionate groups and nearby amino acid residues.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Ab initio quantum direct dynamics simulations of ultrafast photochemistry with Multiconfigurational Ehrenfest approach

    Get PDF
    The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations which show that the approach converges to the exact result in model systems with tens of degrees of freedom. Secondly, we review previous “on the fly” ab initio Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise the details of the sampling techniques and interpolations used for calculation of the matrix elements, which make our approach efficient. Future directions of work are outlined

    An ab initio multiple cloning approach for the simulation of photoinduced dynamics in conjugated molecules

    Get PDF
    We present a new implementation of the Ab Initio Multiple Cloning (AIMC) method, which is applied for non-adiabatic excited-state molecular dynamics simulations of photoinduced processes in conjugated molecules. Within our framework, the multidimensional wave-function is decomposed into a superposition of a number of Gaussian coherent states guided by Ehrenfest trajectories that are suited to clone and swap their electronic amplitudes throughout the simulation. New generalized cloning criteria are defined and tested. Because of sharp changes of the electronic states, which are common for conjugated polymers, the electronic parts of the Gaussian coherent states are represented in the Time Dependent Diabatic Basis (TDDB). The input to these simulations in terms of the excited-state energies, gradients and non-adiabatic couplings, is calculated on-the-fly using the Collective Electron Oscillator (CEO) approach. As a test case, we consider the photoinduced unidirectional electronic and vibrational energy transfer between two- and three-ring linear poly(phenylene ethynylene) units linked by meta-substitution. The effects of the cloning procedure on electronic and vibrational coherence, relaxation and unidirectional energy transfer between dendritic branches are discussed

    Photoinduced non-adiabatic energy transfer pathways in dendrimer building blocks

    Get PDF
    The efficiency of the intramolecular energy transfer in light harvesting dendrimers is determined by their well-defined architecture with high degree of order. After photoexcitation, through-space and through-bond energy transfer mechanisms can take place, involving vectorial exciton migration among different chromophores within dendrimer highly branched structures. Their inherent intramolecular energy gradient depends on how the multiple chromophoric units have been assembled, subject to their inter-connects, spatial distances, and orientations. Herein, we compare the photoinduced nonadiabatic molecular dynamics simulations performed on a set of different combinations of a chain of linked dendrimer building blocks composed of two-, three-, and four-ring linear polyphenylene chromophoric units. The calculations are performed with the recently developed ab initio multiple cloning-time dependent diabatic basis implementation of the Multiconfigurational Ehrenfest (MCE) approach. Despite differences in short time relaxation pathways and different initial exciton localization, at longer time scales, electronic relaxation rates and exciton final redistributions are very similar for all combinations. Unlike the systems composed of two building blocks, considered previously, for the larger 3 block systems here we observe that bifurcation of the wave function accounted by cloning is important. In all the systems considered in this work, at the time scale of few hundreds of femtoseconds, cloning enhances the electronic energy relaxation by ∼13% compared to that of the MCE method without cloning. Thus, accurate description of quantum effects is essential for understanding of the energy exchange in dendrimers both at short and long time scales

    Galectin-1 receptors in different cell types

    Get PDF
    Galectins are a family of animal lectins defined by two properties: shared amino acid sequences in their carbohydrate-recognizing domain, and β-galactoside affinity. A wide variety of biological phenomena are related to galectins, i.e., development, differentiation, morphogenesis, tumor metastasis, apoptosis, RNA splicing, and immunoregulatory function. In this review, we will focus on galectin-1 receptors, and some of the mechanisms by which this lectin affects different cell types. Several galectin-1 receptors are discussed such as CD45, CD7, CD43, CD2, CD3, CD4, CD107, CEA, actin, extracellular matrix proteins such as laminin and fibronectin, glycosaminoglycans, integrins, a β-lactosamine glycolipid, GM1 ganglioside, polypeptide HBGp82, glycoprotein 90 K/MAC-2BP, CA125 cancer antigen, and pre-B cell receptor.Facultad de Ciencias Exacta

    Vibrational energy redistribution during donor-acceptor electronic energy transfer: criteria to identify subsets of active normal modes

    Get PDF
    Photoinduced electronic energy transfer in conjugated donor-acceptor systems is naturally accompanied by intramolecular vibrational energy redistributions accepting an excess of electronic energy. Herein, we simulate these processes in a covalently linked donor-acceptor molecular dyad system by using nonadiabatic excited state molecular dynamics simulations. We analyze different complementary criteria to systematically identify the subset of vibrational normal modes that actively participate on the donoracceptor (S2S1) electronic relaxation. We analyze energy transfer coordinates in terms ofstate-specific normal modes defined according to the different potential energy surfaces (PESs) involved. On one hand, we identify those vibrations that contribute the most to the direction of the main driving force on the nuclei during electronic transitions, represented by the non-adiabatic derivative coupling vector between donor and acceptor electronic states. On the other hand, we monitor normal mode transient accumulations of excess energy and their intramolecular energy redistribution fluxes. We observe that the subset of active modes varies according to the PES on which they belong and these modes experience the most significant rearrangements and mixing. Whereas the nuclear motions that promote donoracceptor energy funneling can be localized mainly on one or two normal modes of the S2 state, they become spread out across multiple normal modes of the S1 state following the energy transfer eventThis work was partially supported by CONICET, UNQ, ANPCyT (PICT-2018-2360), the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 600371, el Ministerio de Economía, Industria y Competitividad (COFUND2014-51509), el Ministerio de Educación, cultura y Deporte (CEI-15-17), Banco Santander and el Ministerio de Ciencia, Innovación y Universidades (RTI2018-101020-B-I00). We also acknowledge support from the Bavarian University Centre for Latin America (BAYLAT). The work at Los Alamos National Laboratory (LANL) was supported by the Laboratory Directed Research and Development Funds (LDRD) program. This work was done in part at the Center for Nonlinear Studies (CNLS) and the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy and Office of Basic Energy Sciences user facility, at LANL. This research used resources provided by the LANL Institutional Computing Program. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy. This work has received finantial support provided by the Spanish Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER, UE) under Project CTQ2016-79345-P and by the Funda-ción Séneca under Project 20789/PI/18

    Sulfide-binding hemoglobins: Effects of mutations on active-site flexibility

    Get PDF
    The dynamics of Hemoglobin I (HbI) from the clam Lucina pectinata, from wild-type sperm whale (SW) myoglobin, and from the L29F/H64Q/V68F triple mutant of SW, both unligated and bound to hydrogen sulfide (H2S), have been studied in molecular dynamics simulations. Features that account for differences in H2S affinity among the three have been examined. Our results verify the existence of an unusual heme rocking motion in unligated HbI that can promote the entrance of large ligands such as H2S. The FQF-mutant partially reproduces the amplitude and relative orientation of the motion of HbI's heme group. Therefore, besides introducing favorable electrostatic interactions with H2S, the three mutations in the distal pocket change the dynamic properties of the heme group. The active-site residues Gln-64(E7), Phe-43(CD1), and His-93(F8) are also shown to be more flexible in unligated HbI than in FQF-mutant and SW. Further contributions to H2S affinity come from differences in hydrogen bonding between the heme propionate groups and nearby amino acid residues.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada
    corecore