1,629 research outputs found
Sunspot observations from the SOUP instrument on Spacelab 2
A series of white light images obtained by the SOUP instrument on Spacelab 2 of active region 4682 on August 5, 1985 were analyzed in the area containing sunspots. Although the umbra of the spot is underexposed, the film is well exposed in the penumbral regions. These data were digitally processed to remove noise and to separate p-mode oscillations from low velocity material motions. The results of this preliminary investigation include: (1) proper motion measurements of a radial outflow in the photospheric granulation pattern just outside the penumbra; (2) discovery of occasional bright structures (streakers) that appear to be ejected outward from the penumbra; (3) broad dark clouds moving outward in the penumbra in addition to the well known bright penumbral grains moving inward; (4) apparent extensions and contractions of penumbral filaments over the photosphere; and (5) observation of a faint bubble or loop-like structure which seems to expand from two bright penumbral filaments into the photosphere
Breaking the Curve with CANDELS: A Bayesian Approach to Reveal the Non-Universality of the Dust-Attenuation Law at High Redshift
Dust attenuation affects nearly all observational aspects of galaxy
evolution, yet very little is known about the form of the dust-attenuation law
in the distant Universe. Here, we model the spectral energy distributions
(SEDs) of galaxies at z = 1.5--3 from CANDELS with rest-frame UV to near-IR
imaging under different assumptions about the dust law, and compare the amount
of inferred attenuated light with the observed infrared (IR) luminosities. Some
individual galaxies show strong Bayesian evidence in preference of one dust law
over another, and this preference agrees with their observed location on the
plane of infrared excess (IRX, ) and UV slope
(). We generalize the shape of the dust law with an empirical model,
where
is the dust law of Calzetti et al. (2000), and show that there
exists a correlation between the color excess and tilt with
+ . Galaxies with high
color excess have a shallower, starburst-like law, and those with low color
excess have a steeper, SMC-like law. Surprisingly, the galaxies in our sample
show no correlation between the shape of the dust law and stellar mass,
star-formation rate, or . The change in the dust law with color excess
is consistent with a model where attenuation is caused by by scattering, a
mixed star-dust geometry, and/or trends with stellar population age,
metallicity, and dust grain size. This rest-frame UV-to-near-IR method shows
potential to constrain the dust law at even higher () redshifts.Comment: 20 pages, 18 figures, resubmitted to Ap
The Evolution of the Galaxy Stellar Mass Function at z= 4-8: A Steepening Low-mass-end Slope with Increasing Redshift
We present galaxy stellar mass functions (GSMFs) at 4-8 from a
rest-frame ultraviolet (UV) selected sample of 4500 galaxies, found via
photometric redshifts over an area of 280 arcmin in the CANDELS/GOODS
fields and the Hubble Ultra Deep Field. The deepest Spitzer/IRAC data
yet-to-date and the relatively large volume allow us to place a better
constraint at both the low- and high-mass ends of the GSMFs compared to
previous space-based studies from pre-CANDELS observations. Supplemented by a
stacking analysis, we find a linear correlation between the rest-frame UV
absolute magnitude at 1500 \AA\ () and logarithmic stellar mass
() that holds for galaxies with . We
use simulations to validate our method of measuring the slope of the - relation, finding that the bias is minimized with a hybrid
technique combining photometry of individual bright galaxies with stacked
photometry for faint galaxies. The resultant measured slopes do not
significantly evolve over 4-8, while the normalization of the trend
exhibits a weak evolution toward lower masses at higher redshift. We combine
the - distribution with observed rest-frame UV luminosity
functions at each redshift to derive the GSMFs, finding that the low-mass-end
slope becomes steeper with increasing redshift from
at to at
. The inferred stellar mass density, when integrated over
-, increases by a factor of
between and and is in good agreement with the time integral of the
cosmic star formation rate density.Comment: 27 pages, 17 figures, ApJ, in pres
The mass evolution of the first galaxies: stellar mass functions and star formation rates at in the CANDELS GOODS-South field
We measure new estimates for the galaxy stellar mass function and star
formation rates for samples of galaxies at using data in
the CANDELS GOODS South field. The deep near-infrared observations allow us to
construct the stellar mass function at directly for the first time.
We estimate stellar masses for our sample by fitting the observed spectral
energy distributions with synthetic stellar populations, including nebular line
and continuum emission. The observed UV luminosity functions for the samples
are consistent with previous observations, however we find that the observed
- M relation has a shallow slope more consistent with a constant
mass to light ratio and a normalisation which evolves with redshift. Our
stellar mass functions have steep low-mass slopes (),
steeper than previously observed at these redshifts and closer to that of the
UV luminosity function. Integrating our new mass functions, we find the
observed stellar mass density evolves from at to at . Finally, combining the measured UV continuum
slopes () with their rest-frame UV luminosities, we calculate dust
corrected star-formation rates (SFR) for our sample. We find the specific
star-formation rate for a fixed stellar mass increases with redshift whilst the
global SFR density falls rapidly over this period. Our new SFR density
estimates are higher than previously observed at this redshift.Comment: 28 pages, 23 figures, 2 appendices. Accepted for publication in
MNRAS, August 7 201
"Appearance potent"? A content analysis of UK gay and straight men's magazines.
With little actual appraisal, a more 'appearance potent' (i.e., a reverence for appearance ideals) subculture has been used to explain gay men's greater body dissatisfaction in comparison to straight men's. This study sought to assess the respective appearance potency of each subculture by a content analysis of 32 issues of the most read gay (Attitude, Gay Times) and straight men's magazines (Men's Health, FHM) in the UK. Images of men and women were coded for their physical characteristics, objectification and nudity, as were the number of appearance adverts and articles. The gay men's magazines featured more images of men that were appearance ideal, nude and sexualized than the straight men's magazines. The converse was true for the images of women and appearance adverts. Although more research is needed to understand the effect of this content on the viewer, the findings are consistent with a more appearance potent gay male subculture
Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution
Noncoding regulatory variants play a central role in the genetics of human diseases and in evolution. Here we measure allele-specific transcription factor binding occupancy of three liver-specific transcription factors between crosses of two inbred mouse strains to elucidate the regulatory mechanisms underlying transcription factor binding variations in mammals. Our results highlight the pre-eminence of cis-acting variants on transcription factor occupancy divergence. Transcription factor binding differences linked to cis-acting variants generally exhibit additive inheritance, while those linked to trans-acting variants are most often dominantly inherited. Cis-acting variants lead to local coordination of transcription factor occupancies that decay with distance; distal coordination is also observed and may be modulated by long-range chromatin contacts. Our results reveal the regulatory mechanisms that interplay to drive transcription factor occupancy, chromatin state, and gene expression in complex mammalian cell states.We thank the CRUK—CI Genomics, BRU, and Bioinformatics Cores for technical assistance and the EMBL-EBI systems team for management of computational resources. This research was supported by the European Molecular Biology Laboratory (E.S.W., D.T., J.C.M., P.F.), Cancer Research UK (B.M.S., T.F.R., F.C., C.F., A.R., D.T.O.), the BOLD ITN (B.M.S.), Darwin Fellowship (A.K.), the Wellcome Trust (WT202878/B/16/Z, WT108749/Z/15/Z) (P.F.), (WT202878/A/16/Z) (D.T.O), (WT095606) (A.C.F.-S) and (WT098051) (P.F., D.T.O.), EMBO Long-term (ALTF1518-2012) and Advanced Fellowships (aALTF1672-2014) (E.S.W.), and by the European Research Council (award 615584) and EMBO Young Investigator Programme (D.T.O.)
The Discovery of New Galaxy Members in the NGC 5044 and NGC 1052 Groups
We present the results of neutral hydrogen (HI) observations of the NGC 5044
and NGC 1052 groups, as part of a GEMS (Group Evolution Multiwavelength Study)
investigation into the formation and evolution of galaxies in nearby groups.
Two new group members have been discovered during a wide-field HI imaging
survey conducted using the ATNF Parkes telescope. These results, as well as
those from followup HI synthesis and optical imaging, are presented here.
J1320-1427, a new member of the NGC 5044 Group, has an HI mass of
M_HI=1.05e9Msun and M_HI/L_B=1.65 Msun/Lsun, with a radial velocity of
v=2750km/s. The optical galaxy is characterised by two regions of star
formation, surrounded by an extended, diffuse halo. J0249-0806, the new member
of the NGC 1052 Group, has M_HI=5.4e8Msun, M_HI/L_R=1.13 Msun/Lsun and
v=1450km/s. The optical image reveals a low surface brightness galaxy. We
interpret both of these galaxies as irregular type, with J0249-0806 possibly
undergoing first infall into the NGC 1052 group.Comment: Accepted for publication in MNRAS. 21 pages, 13 figures. Also
available with high-resolution figures at
http://www.astro.livjm.ac.uk/~npfm/Papers/mmb04.ps.g
The Mass Evolution of the First Galaxies: Stellar Mass Functions and Star Formation Rates at 4 \u3c \u3cem\u3ez\u3c/em\u3e \u3c 7 in the CANDELS GOODS-South Field
We measure new estimates for the galaxy stellar mass function and star formation rates for samples of galaxies at z ∼ 4, 5, 6 and 7 using data in the CANDELS GOODS South field. The deep near-infrared observations allow us to construct the stellar mass function at z ≥ 6 directly for the first time. We estimate stellar masses for our sample by fitting the observed spectral energy distributions with synthetic stellar populations, including nebular line and continuum emission. The observed UV luminosity functions for the samples are consistent with previous observations; however, we find that the observed MUV - M* relation has a shallow slope more consistent with a constant mass-to-light ratio and a normalization which evolves with redshift. Our stellar mass functions have steep low-mass slopes (α ≈ −1.9), steeper than previously observed at these redshifts and closer to that of the UV luminosity function. Integrating our new mass functions, we find the observed stellar mass density evolves from log10ρ* = 6.64+0.58-0.89 at z ∼ 7 to 7.36 ± 0.06 M⊙ Mpc− 3 at z ∼ 4. Finally, combining the measured UV continuum slopes (β) with their rest-frame UV luminosities, we calculate dust-corrected star formation rates (SFR) for our sample. We find the specific SFR for a fixed stellar mass increases with redshift whilst the global SFR density falls rapidly over this period. Our new SFR density estimates are higher than previously observed at this redshift
Deconstructing the galaxy stellar mass function with UKIDSS and CANDELS: the impact of colour, structure and environment
We combine photometry from the Ultra Deep Survey (UDS), Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) UDS and CANDELS the Great Observatories Origins Deep Survey-South (GOODS-S) surveys to construct the galaxy stellar mass function probing both the low- and high-mass end accurately in the redshift range 0.326.0), affording us robust measures of structural parameters. We construct stellar mass functions for the entire sample as parametrized by the Schechter function, and find that there is a decline in the values of ϕ and of α with higher redshifts, and a nearly constant M* up to z∼3. We divide the galaxy stellar mass function by colour, structure, and environment and explore the links between environmental overdensity, morphology, and the quenching of star formation. We find that a double Schechter function describes galaxies with high Sérsic index (n>2.5), similar to galaxies which are red or passive. The low-mass end of the n>2.5 stellar mass function is dominated by blue galaxies, whereas the high-mass end is dominated by red galaxies. This shows that there is a possible link between morphological evolution and star formation quenching in high mass galaxies, which is not seen in lower mass systems. This in turn suggests that there are strong mass-dependent quenching mechanisms. In addition, we find that the number density of high-mass systems is elevated in dense environments, suggesting that an environmental process is building up massive galaxies quicker in over densities than in lower densitie
The Exhibition as an Experiment: An Analogy and its Implications
The analogy of the exhibition as an experiment suggests innovative curatorial approaches that challenge institutional practices. This analogy has however a historical precedence in modernism when itbecame paradigmatic of the exhibitions at the Museum of ModernArt in New York in the 1940s, defining the curatorial approach of its founding director Alfred J Barr. This article considers this early useof the analogy of the exhibition as an experiment and further reflects on its redefinition at the turn of the 20th century by examining how both the notions of the exhibition and of the experiment havechanged over time. In particular, the article examines the different meanings and practices inferred by the concepts of the exhibition and the experiment in the first decades of the 20th century and in the present. It outlines how correspondences between cultural and scientific paradigms can be deployed to tease unacknowledged synergies between two modes of knowledge production (i.e. the art exhibition and the experiment) and address questions of presentness, authority and legitimacy that they imply
- …